TAILORED TAGGER: A PERSONALIZED, ADAPTIVE MUSIC TAGGING SYSTEM

Amanda Mostafavi Cyril Laurier Perfecto Herrera Zbyszek Ras
University of North Carolina at Charlotte Music Technology Group Universitat Pompeu Fabra
acohen24@uncc.edu cypascal@upf.edu perfec-to.hererra@upf.edu ras@uncc.edu

ABSTRACT
We present an adaptive music tagging system, the Tailored Tagger, which allows users to tag their music collections by mood and tracks the user’s tagging behavior. This allows the Tailored Tagger to alter the mood classification to classify songs in the same way that the user would, resulting in a personalized mood recommendation system. To accomplish this personalization, SVMs are retrained to correspond with the way the user tags. The result is a set of SVM classifiers that are unique to each individual.

1. INTRODUCTION AND MOTIVATION
Research on indexing and classifying music by mood or emotion is an expanding area of Music Information Retrieval. However, music can make different people feel different thing. A song that makes one person happy may make another angry, depending on each person’s personality and tastes. Therefore songs need to be able to be classified in a way that is unique to a given user. The Tailored Tagger tracks the way the user tags songs and uses that knowledge to adapt its classification in a way that is personal to the user.

2. SYSTEM DESCRIPTION
The Tailored Tagger is implemented in Python. It interfaces directly with a user’s music player, either iTunes or Winamp, in order to get information on the song currently playing. This allows the user to use the tagger as a natural extension of his music listening experience. When the program starts up, the user is prompted to select the folder where his music is stored. The Tailored Tagger then runs through all the songs in the folder and extracts low level audio feature information from each song, such as MFCC, spectral, rhythmic, and tonal features. From there, the user can select tags for the song currently playing: Happy, Sad, Angry, Peaceful, or the user can type his own tags (see Figure 1).

Figure 1. The layout of the tagger’s user interface
The system classifies songs using support vector machine (SVM) binary classifiers, using the LibSVM implementation [1]. Each emotion has its own binary classifier, with one more classifier for the user tag. Each emotion classifier is initially trained using a base dataset of previously classified songs. This dataset is made up of previously annotated songs from the CAL-500 dataset and Yang’s HCM ’07 dataset. This allows the system to show initial predictions for each song. The user can then choose to keep the tags the system initially predicts, remove them, or select different tags.

3. FUTURE WORK
The eventual goal of this work is to collect a ground truth of unique user classifiers. To this end, this program will soon be adapted to collect user classifiers and store them in an online database or repository, along with information on each user such as age, gender, personality, and musical tastes. Eventually, this background information will be used to personalize the tagger more quickly by grouping the user classifiers by this background information and starting with a more tailored classifier when the program initially starts.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.

© 2011 International Society for Music Information Retrieval
4. ACKNOWLEDGEMENTS

This work was supported in part by the National Science Foundation under OISE-0730065. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the National Science Foundation.

5. REFERENCES

