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Abstract

This thesis presents a low latency online source separation algorithm based on
convolutional neural networks. Building on ideas from previous research on source
separation, we propose an algorithm using a deep neural network with convolu-
tional layers. This type of neural network has resulted in state-of-the-art tech-
niques for several image processing problems. We try to adapt these ideas to the
audio domain, focusing on low-latency extraction of 4 tracks (vocals, bass, drums
and other instruments) from a single-channel (monaural) musical recording. We
try to minimize processing time for the algorithm without compromising on per-
formance through data compression.

The Mixing Secrets Dataset 100 (MSD100) and the Demixing Secrets Dataset
100 (DSD100) are used for evaluation of the methodology . The results achieved
by the algorithm show a 8.4 dB gain in SDR and a 9 dB gain in SAR for vocals
over the state-of-the-art deep learning source separation approach using recur-
rent neural networks.The system’s performance is comparable with other state-of-
the-art algorithms like non-negative matrix factorization, in terms of separation
performance, while improving significantly on processing time. This thesis is a
stepping block for further research in this area, particularly for implementation of
source separation algorithms for medical purposes like speech enhancement for
cochlear implants, a task that requires low-latency.
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Introduction

Source separation as a research topic has occupied many researchers over the last
few years, fueled by advancements in computer technology, signal processing and
machine learning. While source separation has application across various strata
including medicine, neuroscience, finance, communications and chemistry, this
thesis will focus on source separation in the context of an audio mixture. Audio
source separation is useful as an interediatory step for several applications such
as automatic speech recognition, [Kokkinakis and Loizou, 2008] fundamental fre-

quency estimation [Gomez et al., 2012] and beat tracking [Zapata and Gomez, 2013],

or applications such as remixing or upmixing. Some applications of audio source
separation require low-latency processing, such as the ones to be computed in real-
time. One such application is speech enhancement for cochlear implant patients,
where the speech is separated from the input mixture and remixed and enhanced
before being processed in the implant. [Hidalgo, 2012]

The thesis focuses on separating four sources, vocals, bass, drums and others
from a musical recordings of music from various genres. Deep neural networks,
particularly convolutional neural networks are explored, building on work done
by other researchers in the field and by advancements in image processing, where
such networks have achieved remarkable success.

Formally, the problem at hand can be defined by considering a polyphonic
audio signal to be a mixture of component signals. Source separation algorithms
aim to extract the component signals from the polyphonic mixture. This is often
referred to as a cocktail party problem taking a party with several people as an
analogy. With a multitude of simultaneous voices, the task faced by an individual
is to separate out the voice of interest from the others, which may be referred to
as background noise. This problem has been well-studied for decades, since its
introduction in the field of cognitive science by Colin Cherry.

A brief description of some of the state-of-the-art algorithms which attempt
to solve the problem is provided herewith, along with links to original papers
from which they have been cited. For a complete description of the algorithms,
please refer to the cited papers. Following the state-of-the-art, a system for source
separation is presented in the Methodology section. Finally, the the system is



evaluated on the MSD100 and DSD100 dataets and the performance is compared
with that of state-of-the-art algortihms.



Chapter 1

STATE OF THE ART

1.1 Source Separation

Source separation in an audio context can be defined as the extraction or isolation
of a component signal from a mixture of component signals. Audio, specially
musical recordings can be done live, with several microphones capturing different
instruments, but with limited isolation between the different instruments or in
a studio, with a microphone or audio line dedicated to each instrument. These
different sources are then down-mixed to form the final mixture. At this point, the
final mix can be considered as a linear sum of the individual sources, with mixing
filters applied to each source. This can mathematically be represented as:

.Tz(t):Z Z aij(t—’7'77')8j(t—7') (11)
j=17=-—00

Where x;(t) is the final mixture, s; 1s a source, J is the number of sources and a;;

is a filter which may be applied to the source while mixing. As long as the applied

filter is linear, the mix is a linear combination of the sources. If the mixture is

linear in time domain, the corresponding frequency domain representation (after

STFT) is also linear:

J 00
Xz(fat)zz Z Aij(fat_T?T)Sj(Lﬂt_T) (12)
j=1717=-—00

However, other mixing effects can be applied to the final mix including com-
pression, panning, reverb etc. At this point, the mixture is no longer a linear sum
of the individual source channels. Depending on the recording technique, the
mixture, in the context of source separation, can be classified under the following
categories:



1. Under-determined or Over-determined based on the knowledge of the num-
ber of sources that were mixed together. For example, a live recording with
several microphones recording different instruments is considered to be an
over-determined mixture whereas a recording with just one microphone
recording several instruments would be an under-determined mixture.

2. Instantaneous or convoluted: This categorization is determined by the knowl-
edge of post-production effects applied to the final mixture.

3. Time-varying vs time-invariant: A mixture might not be static over time, for
example, a recording done with a moving microphone will be considered as
time-varying.

This thesis will focus on single-channel over-determined separation, with the as-
sumption that the mixture is instantaneous and time-invariant. Source separation
algorithms can broadly be divided into two main categories:

1. Blind source separation: This branch of source separation algorithms tries
to extract component signals from the mixture with little or no prior knowl-
edge about the sources. The most popular of these algorithms exploit the
(assumed) statistical independence of the source signals. Some examples
include: Independent Component Analysis (ICA), [Lopez P. et al., 2011]
[Dadula and Dadios, 2014] Independent Subspace Analysis (ISA), [Wellhausen, 2006]
and Non-Negative Matrix Factorization (NMF). [Duong et al., 2014, El Badawy et al., 2015].
Work has also been done using robust principal component analysis, [Huang et al., 2012].
With advancements in deep learning theories and technologies, many re-
searchers in recent years have been exploring deep neural network architec-
tures. Recent research in this field has focused on using machine learning
techniques like Hidden Markov Models (HMMs), [Higuchi and Kameoka, 2014]
factorial HMMs, [Ozerov et al., 2009] and Deep Neural Networks (DNNss).
[Huang et al., 2014][Grais et al., 2014] [Nugraha et al., 2016]

2. Informed Source Separation: These methods assume prior knowledge of
the source signals, in the form of MIDI or score or other representations
of music. [Miron et al., 2015] However, since this thesis does not focus on
informed source separation, a detailed explanation of the same will not be
provided herewith.

Adaptive Weiner filtering in the time-frequency domain is usually used for source
separation. After all sources S;,,4; have been estimated, they can be used to
compute masks with gains between O and 1, which are applied to the mixture
signal:

|Simgis (1, f)I?
i=1 | Simgii (1, f))|

4

5V’imgij (na f) =

S Xi(n, f) (1.3)



Note that this operation is done only on the magnitude spectrogram while the
phase of the original mixture is used for synthesis of the individual sources. Some
of the common methods used for source separation are described in brief below.

1.1.1 Principal Component Analysis (PCA)

Principal Component Analysis and Independent Component Analysis are statis-
tical techniques that have been used for Blind Source Separation by many re-
searchers. [Lopez P. et al., 2011] [Dadula and Dadios, 2014] The basic idea be-
hind these techniques is to project the data from a time series like an audio record-
ing into a new set of axes that are based on some statistical criterion. These axes
are set to be statistically independent in contrast to the Fourier Transform where
the time domain data is projected onto a axes of frequencies, which might overlap.
The frequency axes in a Fourier transform are fixed in terms of the frequency bins
and will remain the same regardless of the piece analyzed, whereas in the PCA
and ICA, the axes are dynamic and are different for each piece being analyzed.
The axes, once discovered, can then be separated and then inverted to find the dif-
ferent sources present in the input signal. Variance is the measure used to separate
axes in PCA. The axes are recursively chosen as directions in which variance in
the signal is maximized, leading to decorrelation in the second order among the
axes. Thus, the main components of the energy of the signal are contained in the
first few axes. This can be used both for data compression and source separation.

In ICA, the fourth moment, known as kurtosis, is generally the criteria for
defining the new axes. Kurtosis is basically a measure of the non-Gaussianity
of a signal, a negative kurtosis indicates a signal that has a probability distribu-
tion function that is broader than a Gaussian distribution whereas a positive value
would represent a distribution that is narrower. Therefore, ICA separates a signal
into non-Gaussian independent sources while PCA separates a signal into Gaus-
sian independent sources.

These techniques are often implemented as a series of matrix multiplications
representing filters. In general, a signal X with N dimensions and M samples (a
matrix of dimensions M x/N) can can be mapped into a signal Y using a transform
matrix W of dimensions Nz N as YT' = WXT. This transformation projects
the signal into a different axis based on the transform matrix. If the length of
the transformed signal is the same as the input signal, then the transformation is
termed as an orthogonal transformation and the axes are perpendicular.

This is a lossless transformation as the original signal can be reconstructed
without any loss of information. If one or more of the columns of the transform
matrix is set to zero, it is termed as a lossy transformation and is used for filtering
or compression of data. A biorthogonal transformation is one where the axes are
not perpendicular. However, the transformation is still lossless. PCA and ICA are

5



orthogonal and bi-orthogonal transformations respectively. The main challenge in
the two cases is discovering the transformation matrix, W. The sources can then
be separated and then reconstructed using the inverse of the W, A.

1.1.2 Non-Negative Matrix Factorization (NMF)

NMFs have been widely used for supervised source separation in the past. The
basic idea is to represent a matrix Y as a combination of basis (53) and activation
gains (G) as Y = BG. The basis vector represent the frequency response of
the source at a given time and can be thought of as a vertical vector, whereas GG
represents the gain of the frequency response at any point along the time axis. G
is thus a horizontal vector along time. Thus, for source separation, if the mixture
Y is known to be composed of two sources,S; and S, such that Y = S; +
S,.And the basis vectors for these two source are computed as B; and Bs, then
the mixture can be represented as Y = B;(G; + ByGs, where G and G4 are the
respective activation gains for the two sources present are different moments of
time in the mixture. However, it must be noted that the NMF approach assumes
that mixture can be represented as a linear combination of the basis dictionaries.
For K sources, the mixture can be represented as:

k=K
Xij =Y BixGu, (1.4)
k=1

For source separation, the divergence between X and BG is to be minimized to
ensure that the sources found by the algorithm represent the mixture signal:

{B,G} = argminp ¢>0D(X, BG) (1.5)
Where D represents a divergence function, which may be:

1. Euclidean distance:

D(A,B) = |A— B|I* = > _(Ay — By)* (1.6)

ij

2. Kullback-Leibler (KL) Divergence:

Ay

ij ij

The multiplicative update algorithm is one of the most common algorithms used
for this divergence [Lee and Seung, 2001] and can be described as follows:

6



1. Vectors B and (G are initialized with random values

2. For Euclidean divergence, B is updated as:

XG*

For KL divergence, B is updated as:

() G"
1G7

where 1 represents a matrix of all ones of the same size as X

B:=BR® (1.9)

3. For Euclidean divergence, G is updated as:

BTX

While for KL divergence, it is updated as:

B'(5¢)

(1.11)
This process is repeated for a pre-decided number of epochs or until the the di-
vergence falls below a pre-decided threshold. Once the magnitude spectrograms
of the sources are estimated, the sources can be synthesized using the phase of
the original mixture signal. Note that the NMF algorithm needs to be adapted for
different types of source separation, depending on the number of sources and the
mixing process applied to generate the mixture.

1.1.3 Flexible Audio Source Separation Toolbox (FASST)

FASST is a variation of the NMF algorithm described in the previous section, pro-
posed by [Ozerov et al., 2012], based on a generalized expectation-maximization
(GEM) algorithm. [A. P. Dempster, | The Toolbox is meant to be a generalized
implementation, that is flexible for different use cases of source separation. In
the implementation of the toolbox, each source to be separated from a mixture is
represented by an excitation-filter model, as shown in eq: 1.12.

V= Ve o vt (1.12)

where V" represents the excitation spectral power and V}-f " represents the filter
spectral power. V* is further represented as a modulation of spectral patterns,
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denoted by E7* by time activation coefficients P/*. These two terms can be
seen as analogous to the basis vectors and activation gains used in NMF. The
spectral patterns are further represented as linear combinations of narrow band
spectral patterns W;* and weights U7*. Similarly, the time activation patterns

are reprsented as linear combinations of time localized patterns, H5* and G5*. A

similar representation is carried out for ij !, resulting in the following equation:
V; = (WU G ) o (WU Gt HYY) (1.13)

These parameters are estimated for each source using the GEM algorithm, with in-

crements along each epoch following the Multiplicative Update algorithm. [Lee and Seung, 2001]

Following this, the estimated sources are used to calculate weiner masks which are
applied to the mixture spectrogram to determine the final source estimates.

1.2 Source Separation Evaluation

Evaluation of source separation algorithms is a tricky subject as each person might
have his own views on the quality of an audio recording. Fortunately, the valu-
ation metric has been well-studied and objectified by Emmanuel Vincent et al.
[Vincent et al., 2006] [Vincent et al., 2007]

The paper suggests that source separation evaluation should be done in the
context of the application of the separation. A mixture can be considered to be
a linear sum of sources, (s;);c; and some noise which might be mixed into the
signal, n. The simplest perceivable measure is to use the L2 normalized difference
between the estimated source 5; and the target source s;:

. e
sl

(1.14)

D= minezil

5
15
The difference is always positive and will be zero if and only if 5; = s;. However,
even in case of the worst case scenario, where s; is orthogonal to s;, the difference
would still be limited to a maximum of two, as the sources have been normalized.
Also, in case of a noise or distortion which is correlated to the desired source,
this measure gives a low value, which may or may not be desirable, depending on
the application. For example, in a high quality audio recording, a correlated noise
may be considered undesirable, but in the case where the extracted source is to be
remixed or processed further (as in the case of speech recognition) some amount
of distortion may be allowed. To take these cases into account the paper proposes
some measures for evaluation of blind source separation:
To calculate these measures, the estimated source is first decomposed into four
constituents as:
§j = Starget + Einterf + €spat + Cartif (115)

8



Starget 18 @ modified version of the target source, which may contain certain
allowed distortions, F. e;n.r¢ represents interference coming from unwanted
sources (s;:);2; which might be mixed along with 5;. e, represents spatial
distortions and e,,;; represents other noises such as forbidden distortions, not in
the set F and burbling artifacts.

For analysis, orthogonal projections are considered. These can be defined as
follows: For a subspace with vectors y1, yo......Yn, [I{y1,y2......y, } is a matrix
which projects a vector onto this subspace. Hence, the following matrices are
defined:

Py ; :=1(s;) (1.16)
Pg :==TH{(sj )1<j<n} (1.17)
Psp = T{(sj)1<jr<n, (Ni)1<i<m } (1.13)
These projectors are used to find the constituents of 5; as:
Starget +— Ps,jgj (1.19)
Cinterf = Psgj — Psngj (120)
€spat = Pgmé\j — Ps,jgj (121)
Cartif ‘= §j - PS,ngj (1.22)
The computation of s;,,4¢; 1 straightforward, using an inner product:
~ Sj
Starget = <Sj7 3j> ||SJ||2 (1.23)
J

To compute Ps and Ps ,,, a vector c of coefficients is defined as:
c = Rgi[(55,51).-.(35, s.)]" (1.24)

where 755 denotes the Gram matrix. Then Pgs5s; can be written as:
n
Psg; =Y epsy=cs (1.25)
j'=1

where (.)# denotes the Hermitian transposition. However, if the sources and the
noise signal are assumed to be orthogonal to each other, the above equations can

be re-written as:
S 5/

Conrs = 32 (55,840 T2 (-0
J'#i J
~ ~ U 1
PS,nSj = Pssj + Z<Sj, nJW (127)
=1 ?

Using these values, the following evaluation measures can be computed:

9



1. Source to Distortion Ratio:

HStargetH2
SDR := 10log (1.28)
10 Heinterf + €spat + eartifuz

This measure represents the overall performance of the source separation
algorithm.

2. Source to Interferences Ratio:

| Starget ||2

STR := 10logyg (1.29)

||€interf||2

The suppression of interfering sources in the separation is objectified by this
measure.

3. Image to Spatial distortion Ratio:

||St(z7"get + einteerQ

ISR := 10log1g (1.30)
[€spat|?
4. Sources to Artifacts Ratio:
, 2
SAR - ].0[0910 Hstarget + eznterf + espatH (131)

learsi|®

This measure estimates the artifacts introduced by the source separation
process.

The values of the four components, Sqrgets Cinterf> €spat AN €qp4i ¢ VAry over time
and the paper suggests windowing the signal in question to calculate local values
for these features. The values can then be summarized using statistical measures.

1.3 Neural Networks

Following the success of machine learning techniques in other fields, particularly

image processing,[Krizhevsky et al., 2012a] several researchers have adopted ad-

vanced algorithms to the Source Separation paradigm. The most widely discussed

of these include Deep Neural Networks, which use neural networks with more

than one layer to learn information about audio sources. [Huang et al., 2014,

Huang et al., 2014, Grais et al., 2013, Grais et al., 2014, Simpson, 2015, Nugraha et al., 2016]
A brief introduction to neural networks is provided below, followed by some spe-

cific examples of the application of the same to the source separation problem.

10



Figure 1.1: Linear Representation: The blue dots represent class A and the red
dots represent class B. The line y = ax + b can be used to represent the entire data
asClass A:y > ax +band Class B: y <=ax + b

1.3.1 Linear Representation Of Data

It can be seen from the sections above that conventional source separation tech-
niques like PCA and NMF try to find different representations of the mixture data
from which the individual components can be extracted. Here, a brief description
of the techniques for representing data, leading upto neural networks is provided.
To make sense of data, it sometimes needs to be represented in another form,
form example, classified as belonging to Class A or B. Some data, such as the one
shown in fig 1.1, is linearly separable, i.e. it can be represented entirely with a
linear equation. For the example shown, the blue dots represent data belonging
to class A whereas the red dots represent data belonging to class B. This data can
thus be represented as a linear equation as:

y=axr—+b (1.32)
where
ClassA:y>ax+0b (1.33)
and
ClassB:y <=ax+0b (1.34)

However, it is not always possible to find linear representations of data as for the
one shown in fig 1.2. Neural networks provide an elegant way to find represen-
tations of data which cannot be done with simple models as the one shown in eq
1.32

11



Figure 1.2: Data that is not linearly separable

1.3.2 Neural Networks For Non-Linear Representation Of Data

A neural network is an information processing system inspired by the human ner-
vous system.[Grossberg, 1988] Like the nervous system, artificial neural networks
comprise of connections of nodes called neurons. Each neuron receives an input,
processes the information in the input and gives an output. These neurons contain
parameters, which must be optimized using a training set, which has a labeled
ground truth. Once trained, the network can be used to input data to produce out-
puts for testing and for future use. While many possible arrangements of neurons
are possible, the most commonly used consists of three vertically arranged layers,
as shown in figure 1.3

1. Input Layer
2. Hidden Layer

3. Output Layer

Each layer consists of neurons, which can mathematically be described in
terms of its parameters. These parameters are optimized during the training phase
of the network and are described below:

1. Inputs: X, representing the input vector:: ...z,
2. A bias unit: x(, which is a constant value added to the input vector.

3. Weights for each of the inputs and the bias: W representing the vector
Wq... Wy

4. A non-linear activation function, o, which could be:

12



Input Hidden Output
layer layer layer

S~

: \/\ uput

Q/

Figure 1.3: Basic Neural Network: connections are shown between neurons for
the input layer, the hidden layer and the output layer. Note that each node in the
input layer is connected to each node in the hidden layer and each node in the
hidden layer is connected to each node in the output layer.

Bias

1 o— W1

T Transfer
\ N function  Output

Inputs { 72 0 wa /@/ @—» a

Ty O— Wy,

Weights

Figure 1.4: A node or neuron of the neural network with a bias unit: x,, inputs:
x1...Tp, wWeights: wy...w, and the output: a

13



1l .
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(b) Sigmoid
1
S(z) = 1.36
(@) = (136)
T
1 L |
0.8 | |
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0.2 :
0 [ -
—6 —4 —2 0 2 4 6
(c) Rectified Linear Unit (ReLU)
f(z) = max(0,x) (1.37)
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5. The output, a, which can be represented as:

i=N
a=o() ww) (1.38)
i=0
Which can be re-written as:

i=N i=N
a=0 (ngo + Z wixi> =0 <b + Z wixi> (1.39)
i=1 i=1

where b represents the bias added to the layer. Here, b and W/ are the parame-
ters to be optimized using the training data set.

As each node contains a non-linear function, the network is capable of learning
various non-linear representations of the input data through various combinations
of input nodes and activation functions.

1.3.3 Deep Neural Networks

Deep neural networks are neural networks with more than one hidden layer, as
shown in fig 1.5 . As data passes through more than one layer, more abstract
representations of the data can be discovered, which might help in better classi-
fication of the data. Each layer of the deep network has inputs and outputs and
the number of inputs of each layer is dependent on the number of outputs of its
predecessor. If the input of the £y, layer is defined as x;, then its output can be
written as:

i=N
Qp = O (bk + Z wk,ia:kﬂ-) (140)

i=1
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Figure 1.5: Deep Neural Networks with K hidden layers. Only the first and last
hidden layers are shown in the figure, but as many as needed can be added to the
architecture. Each node in each hidden layer is connected to each node in the
following hidden layer.

Note that different activation functions may be used for different layers, hence oy,
is given for each layer.

1.3.4 Autoencoders

Autoencoders are a special class of neural networks designed to find an efficient
representation of data by learning correlations between the data points. This type
of network is often used for denoising data. [Vincent et al., 2010] The inputs and
outputs of an autoencoder are the same. The autoencoder has two parts:

1. Encoder or the hidden layer which finds the desired representation for the
data.

i=N
y=o01 <bl +> wl,ixi> (1.41)
i=1
This allows the network to find a representation of the input data based on
the correlations between input-data.

2. Decoder or the output layer, which reconstructs the input from the represen-
tation found in the encoding stage.

i=N
T = 02 <b2 + Z w27iy7j) (142)

i=1
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Figure 1.6: Autoencoder with bottleneck

This stage of the network uses the activations of the encoder stage to regen-
erate the input, thereby learning a function hy,(z) ~ x, where W and b are
parameters of the network.

Autoencoders are particularly useful for data compression. For example, if the
input vector has 100 values and the hidden layer has 50 nodes, then the autoen-
coder tries to learn a 50-point representation of the input based on the correla-
tions between the 100 input values. This is also referred to as a bottle-neck.
[Sainath et al., 2012] Figure 1.6 shows the structure of such an autoencoder. Note
that if each point in the input comes from an an independent Gaussian, i.e. the in-
put data is completely random, then the autoencoder will not be able to learn any
compressed representation. The autoencoder described above relies on the bottle-
neck for data compression, other types of autoencoders have also been desgined,
including:

1. Sparse Autoencoder: This type of autoencoder has a higher number of units
in the hidden encoding layer, but with a a sparsity constraint imposed on
the activations of the hidden layer. This means that for a given input, only
a small number of units will be activated in the hidden layer. The sparsity
cost is imposed as follows:

1= p;

52
> plog - + (1 - p)log (1.43)
j=1 Pj
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2)

Where a(

J

represents the ;% activation of the hidden layer.

2. Contractive Autoencoder: For this autoencoder, learning is enforced by
adding to the network loss the square root of the Frobenius norm of Jaco-
bian of the hidden layer with respect to input values, as shown in equation
1.45. This value represents the change in the hidden layer representation
with respect to a change in the input. A low value means that a change in
the input value leads to a small change in the hidden representation. Adding
this term to the loss forces the network to learn a useful representation from
the input data.

2
Gh(x(-t)
V2O = 3 ((%O (1.45)
Jj k k

1.3.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a variant of neural networks inspired
by the human visual cortex [Hubel and Wiesel, 1968] and have been widely used
in image processing. [Fleet et al., 2014] CNNs exploit the local spatial correlation
among input neurons from an image by using local receptive fields. For illustrative
purposes, the input layer, instead of being a one-dimensional layer of neurons can
be thought of as a two-dimensional matrix, as is the case with an image file. For
images, the values of this two-dimensional matrix represent the pixel intensities
at the coordinate index of the matrix. Now, in a normal neural network, each of
these input neurons would be connected to each of the neurons of the first hidden
layer, thus forming a fully connected layer. However, in CNNs, each neuron of
the first hidden layer is only connected to a small, local region of the input layer,
known as the local receptive field, as shown in figure 1.7.

This local receptive field is moved across the input array to form the hidden
layer. The movement can be of different stride lengths. In figure 1.7, a stride of
(1,1). The number of neurons in the hidden layer is dependent on the number of
units in the input layer, the stride and the number of units in the local receptive
field. If the input is a matrix of dimensions Mz N, the stride is (1, 1) and the local
receptive field is an array of Az B then the hidden layer will have dimensions
(M — A+ 1)(N — B+ 1) since the local receptive field can only move M — A
units across and N — B units downwards, if a stride length of 1 is used. The
key feature of CNNs is that the neurons of the hidden convolutional layer share
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Figure 1.7: Convolutional Neural Networks: Local Receptive Field
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Figure 1.8: Convolutional Neural Networks: 3 Az B filters are convolved across
an input of Mz N resulting in a layer with 3 kernels of shape (M — A+ 1)x(N —
B+1)

weights and biases, so that the entire process is akin to a convolution of a matrix
of size Az B over a matrix of dimensions M xN. This is called weight sharing and
is an important concept in convolutional neural networks. In mathematical terms,
the output of the j, k;;, neuron of the convolutional layer can be expressed as:

I=A—1m=B-1
ang =0 (b + Z Z wl7m$j+17k+m> (146)

=0 m=0

In other words, the convolutional layer computes the activation of a feature of di-
mensions Ax B across different regions of the input layer. The mapping from the
input layer to the convolutional layer is often called a feature map and the shared
weights and the bias unit are termed as the kernel. Since each of these kernels
is detecting one feature over the input layer, the convolutional layer usually in-
cludes more than one kernel or feature map, as shown in fig 1.8. Convolutional
neural networks have extensively been used for image classification including the
MNIST handwritten digit set. [Krizhevsky et al., 2012a] One of the biggest ad-
vantages of using CNNs is that memory and resources required are lower than
those used by a regular fully connected neural network, as the weights and biases
across hidden layers are shared.

To implement more than one convolutional layer and find a more abstract rep-
resentation of the features, pooling layers are often included in CNNs, generally

20



after the convolutional layer. The pooling layer compresses information stored in
the convolutional layer, by taking a statistical feature of a local region of neurons
in the convolutional layer. The most popular pooling layer is the Max-Pooling
layer, which just takes the maximum of a local region of neurons in the convolu-
tional layer.

Apart from Max-Pooling, L2 pooling is also quite frequently used. In this
type of pooling, the square root of the sum of the squares of a region of neurons
is taken, thereby compressing the information stored within those neurons.

1.3.6 Recurrent Neural Networks

Since audio signals have temporal context, the neural network must be given some
memory to add contextual information from the past. One solution to do this is to
use a recurrent neural network. In this case, the hidden layer is connected to itself,
with a weight applied to the output of time ¢ — 1 added to the function at time .
The input of the layer at time t thus becomes:

J(G, 1) =D X (6, 6)Wi(i, ) + byWi(i + 1, 5) + WoH(J(j,t — 1)) (1.47)

Where H(J(j,t — 1)) represents the hypothesis of the network at time ¢ — 1. This
function has infinite memory since each the output at each time step is given an
equal weight. The gradient in this case has often been observed to explode (reach
a high value) or vanish (reach 0). [Pascanu et al., 2012] Therefore, despite the
theoretical usefulness of RNNs, practical implementation can be quite difficult.
This problem particularly affects the lower layers of a deep neural network; while
the higher layers are learning information through successive iterations, it has
been observed that the gradient for the lower layers often goes down to zero and
therefore further information on these layers is often not learned. One simple
solution to this problem is to restrict the memory of a node to a few inputs, thereby
reducing the time context that the node uses for learning. RNNs therefore are
useful for modeling short-term temporal dependencies but fall short on modeling
long-term dependencies. It has been found that proper initialization of parameters
helps in alleviating these problems. [Bengio, 2009]

LSTMs or Long Short Term Memory Networks offer an elegant solution to
the memory predicament by using gates to decide when the information learned
from an input is useful to save in the context of the learning and when it is not.
[Stollenga et al., 2015] The gate parameters are also learned during the training
phase.

The gates are illustrated in the figure above. In this particular case, the hy-
pothesis from the previous time frame is h(¢ — 1) and the input vector is x(t).
The LSTM, at any point of time has a cell state denoted by C;_; which decides
whether an input is to be remembered or not.
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A closer look at the flow of x(t) and h(t — 1) reveals that the input and prior
hypothesis passes through an activation function, ¢ in this case and is multiplied
with C;_;. This activation function determines the contribution of the previous
state to the current hypothesis, a value of zero would result in null contribution
whereas a value of one would lead to a full contribution. For understanding, this
term can be represented as

Je = o(Wylhi—1, 2] + by) (1.48)

The second phase of the LSTM decides whether the new information from the
input needs to be saved for future use by updating the cell state. To do this, ()
and h(t — 1), are passed through two activation functions, o and tanh, leading to
two values:

th = O'(Wi[htfl, l’t] -+ bl> (149)
Cy = tanh(We[h_y, T + be) (1.50)

These values are thus used to update the cell state as:
Ci = fiCi +:Cy (L.51)

Finally, the output of the current time state is calculated by using another acti-
vation function, hence determining the amount of the decided state that should
influence the output at the time:

O = O'(Wo[htfl, xt] + bo) (152)

ht = Ottanh(ct) (153)

A detailed explanation of LSTMs is beyond the scope of this thesis, but an inter-
esting blog explaining the same can be found at http://colah.github.io/posts/2015-
08-Understanding-LSTMs/.

1.3.7 Training Neural Networks

Neural networks need to be trained before they can be useful. To do this, a training
set is usually prepared with inputs x and labeled outputs y. The set of inputs can
be represented as a vector X and the outputs as Y. For training, the inputs are
passed through the network to obtain the output of the network, . Note that
the dimensions of the output layer of the network must match the dimension of
the desired output, y. Following this, an objective or loss function is computed,
representing the difference between y and . Although various types of difference
functions maybe used, the most commonly used are the Euclidean distance :

J(0) = |ly —9lI? (1.54)

22



and the KL divergence:

J(0) =Y (ylogg oyt y> (1.55)

Where J(0) is the objective function parameterized by the parameters 6 of the net-
work, the biases of the layers, B and the weight matrix, . For each input, x in X,
the parameters are updated in the opposite direction of the gradient of the objective
function, V(). For any curve, the gradient of the curve represents the direc-
tion of the curve going forward. Hence, a step opposite to this direction would
ideally lead to a global or local minima. [Hassoun, 1995] This procedure is called
gradient descent and has three variants: (http://sebastianruder.com/optimizing-
gradient-descent/)

1. Batch gradient descent, which computes the gradient of the objective func-
tion with respect to the parameters for the entire set of inputs before updat-
ing. The update is done as:

0:=0—nVyJ(0) (1.56)

Where 7 represents the learning rate or the amount by which a step should
be taken opposite to the direction specified by the gradient. This update
is repeated over the entire training set for a pre-defined number of epochs.
The batch gradient descent algorithm is guaranteed to find a global minima
for convex error surfaces, but will stick to a local minima for non-convex
problems.

2. Stochastic gradient descent (SGD) is similar to the batch gradient descent
algorithm, but performs a parameter update after each training example z;
of training set X.
0:=0—nNeJ(0;x;;v;) (1.57)
SGD is faster than the batch descent algorithm and also avoids redundant
calculations that might be involved in the later. However, it too converges to
a local minima for non-convex error surfaces and is prone to overshooting
as updates are performed frequently with high variance.

3. Mini-batch gradient descent combines the best of both the SGD and the
batch gradient algorithms by performing an update after each mini batch of
size n of the input set X.

This leads to a lower variance of updates and a more stable convergence. It
also allows the use of optimized matrix operations making the mini-batch
algorithm faster than the other two algorithms. Note that the mini-batch
algorithm is also often referred to as SGD.
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Optimizing Gradient Descent Algorithms

While the aforementioned algorithms are good for optimizing networks for con-
vex objective functions, they often get stuck at local minima while handling non-
convex problems. [Dauphin et al., 2014] Using momentum [Qian, 1999] provides
an elegant solution to this problem. This method adds a fraction of the update of
the last time step to the current upgrade:

vy = Yvi—1 +nVeJ(0) (1.59)

0:= 60— v (1.60)

The momentum term, 7y increases the update when the two updates are in the same
direction and decreases the update when the two terms are in opposite direction.
This reduces oscillation in the descent leading to faster convergence. + is usually
set to 0.9 Other similar ideas for optimization of gradient descent algorithms are
presented below:

1. Nesterov accelerated gradient (NAG) is a method which approximates the
values of the parameters after an update before performing an update. In
other words, it performs a look ahead to see if the update is going in the right
direction before making the update. mathematically, this can be represented
as:

vy = Y1 + Ve J (0 — yvi-1) (1.61)
0= 60— (1.62)

2. Adagrad [Duchi et al., 2011] adapts the learning rate for different parame-
ters in the parameter set. Parameters which are updated frequently use a
smaller learning rate, while infrequently updated parameters are updated
using a higher learning rate. Defining g, ; to be the gradient of the loss func-
tion with respect to parameter ; of the parameter set 6 at time t, the update
process can be written as:

9ii = Vo (0;) (1.63)
Ori1i = Ori —1.G14 (1.64)

The learning rate is updated each time for each parameter ¢; using the past
gradients used to modify the parameter:

Ui

\/ﬁ -Gt

Orv1 = 01 — (1.65)
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G is a diagonal matrix where each diagonal element G, ; is the sum of
the squares of the gradients with respect to 6; up to the ;i time step. €
is a small term used to smoothen the descent and avoid division by zero.
Adagrad does not require the setting of the learning rate manually and has
provided good results in various image and video processing problems.
[Coates et al., 2011] However, since the gradients are accumulated in the
denominator, the learning rate for parameters which are frequently updated
goes down steeply and might at some time be too small for the network to
gain further knowledge.

3. Adadelta [Zeiler, 2012] is an algorithm similar to adagrad which seeks to
resolve the problem of diminishing learning rate. This is done by restricting
the number of accumulated gradients to a window w. The algorithm uses
the running average F[g?|; of past w squared gradients:

El¢%: = vE[g%i-1 + (1 — 7)g? (1.66)

The update is done using the root mean squares (RMS) of parameter updates
and the gradient

E[A0?), = yE[A0?],1 + (1 — 7) A6} (1.67)

RMS[A0); = \/E[A0?]; + € (1.68)
RMSgl; = \/E[g*]: + € (1.69)

RMS[AG],

9t+1 =0; — RMS[g]t

9t (1.70)

Backpropogation

The learning techniques described in the previous section use the gradient of the
objective function to optimize the parameters of the network. However, finding
the gradient of the network is not a trivial task. Backpropogation is one of the
techniques used to find the gradient of an objective function of a neural network.
Each input data point is first fed forward through the network to obtain activations
for each of the layers. Then partial derivatives are estimated for each layer using
the activation function as:

0J(0) _ 9.J(6) 0s)
001, — " ds) 0!

J ij

(1.71)
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o o . . . sl .
The derivative of the activation function with respect to the weights, a%l] can easily
ij
8J(0)

be computed as h~!. but the derivative of the cost,

5ol as 5; requires some
J
mathematical manipulation.
The intuition here is that the term 5; represents, to some degree, the con-
tribution of a node j of layer [ to the overall loss. Thus to calculate this, loss

contribution is calculated for the last layer as:

0J(0) OJ(oF sk,

oE = L_Z _ 9l i %) (1.72)
Js; Js;

Once calculated, § jL ~! can be backpropogated through the network to find the

loss contribution of the other layers:

d(l)
ot =0 S sl (1.73)
j=1

This is in turn used to find the derivatives of the activation function as given
by equation 1.71

1.3.8 Initialization Of Neural Networks

For non-convex error surfaces, initialization of weights of the various layers in
a neural networks is very important to ensure that the optimization process does
not land on a local minima. [Xavier Glorot, | Furthermore, for deep neural net-
works with more than one hidden layer, if the weights are initialized to very small
values, the variance of the input diminishes rapidly as it is propagated through
the layers. As a result, the network does not efficiently learn. Similarly, if the
the variance increases rapidly if the weights are initialized to high values also
leading to inefficient learning. To prevent these problems, it is important to en-
sure that the variance remains similar across the layers. Or, in other words, the
variance of the input of a layer and its output should be the same. Xavier Golot
et al. [Xavier Glorot, ] proposed an efficient method for initialization of layers,
described below.
The variance of the output y of a layer [ of the network can be given as:

var(y) = var(riwy + rows......Tw,) (1.74)

Note that the variance of the bias node, b is O since it is a constant. The individual
terms of this equation can be written as:

var(v;w;) = E(x;)*var(w;) + E(w;)*var(z;) + var(w;)var(z;) (1.75)
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Where E(x) represents the expectation value of = or the mean value. If the
layer is initalized with a Gaussian with zero mean, then equation 1.75 can be
rewritten as:

var(z;w;) = var(w;)var(x;) (1.76)

Therefore, equation 1.74 can be written as:

var(y) = var(xi)var(w; )+var(zy)var(wy).....var(x, )var(w,) = Nvar(xz)var(w;)

(1.77)
For the layers to have equal variance, Nvar(x;) should be equal to 1. Therefore,
the paper suggests initializing the weights with a Gaussian with zero mean and
variance given by:

1
var(w) = Now, (1.78)
where N N
Nypg = — 2o ; out (1.79)

Where N;, is the number of input nodes of a layer and N, is the number of
output weights of the layer.

1.4 Neural Networks For Source Separation

This section provides a description of some of the techniques which have been
proposed in the recent years applying neural networks for source separation:

1.4.1 Using Deep Neural Networks

[Uhlich et al., 2015] and [Nugraha et al., 2016] have proposed systems using Deep
Neural Networks for source separation. While the former focuses on instrument
based separation, the later uses neural networks for multi-channel sound source
separation.

Instrument Based Separation

[Uhlich et al., 2015] designed a deep neural network system for source separation
with five fully connected layers, with ReLU nodes. The input vector, z, for the
network consists of the fast Fourier transform of recordings of two sets of three
instruments: a horn, a piano and a violin and a bassoon, a piano and a trumpet.
These recording were done with a sample rate of 32kHz. Each input frame of
length L was concatenated with C' succeeding and preceding frames, with no
overlap, leading to a total vector length of (2C' + 1)L, so that the network could
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model temporal context. With C' = 3 and L. = 513, the input vector had 3591
elements, covering 224 milliseconds of the audio input. The input vector, x, was
normalized by 7, a scalar representing the Euclidean norm of the 2C' 4 1 frames.
This ensures that the input vector is independent of amplitude variations which
may occur in different recordings.

The network was trained layer-wise for 600 iterations using the Limited-memory
Broyden Fletcher Goldfarb Shanno (L-BFGS) algorithm and for an additional
3000 iterations for fine tuning. Thus for each layer % of the network, the following
optimization was performed.

P
{Wklmt7 bimt} = argminy sk Z ||S(P) _ (kaép) + bk)||2 (1.80)

p=1

Where s) represents the p* source to be separated.

Multichannel Source Separation

[Nugraha et al., 2016] trained a DNN for source separation using multichannel
audio input. The researchers used a single time-frame for training, thus focusing
entirely on spectral characteristics of a single frame, without taking temporal evo-
lution into account. Training was done using the ADADELTA algorithm and five
different cost measures were tested for optimization of the network.

1. Itakura-Saito divergence, which is widely used in the speech processing
community and focuses on perceptual quality.

_ 1 yéj(fa n)‘Q ’é<f7 n)’2
D;g = TEN Z < o (Fom) — ZOgW — 1) (1.81)

j7f7n
Where J represents the number of sources, ¢ the short-time Fourier trans-
form of the sources, N is the number of time frames, F’' is the number of
frequency coefficients and v; denotes the power spectral density of the j;;,
source.

2. The Kullbak-Leibler (KL) divergence:

1 ~ ~j ) ~
D =y 2 ('cj(f’ ")'% ~latmlEuth "))
(1.82)

3. The Cauchy cost function

Pew= 7 3= (loaesfm) + ) = togyfu () ) 183
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4. The phase sensitive cost function

1 - -
Dps = W”Zn [my(f,ma(f,n) =&(fim)F (1.84)
where m;(f,n) = % is the single channel Wiener filter for each

source.

5. The mean square error (MSE)

Duse = 5o Sl = o(my (89)

Bfmn

The researchers concluded that the Kullbak-Leibler (KL) divergence had the best
performance for the source separation task, followed closely by the mean-square
divergence.

1.4.2 Using Recurrent Neural Networks

Po-Sen Huang et al. [Huang et al., 2014] recently proposed a methodology using
a deep recurrent neural network for separating singing voice from single channel
musical recordings. The proposed model, shown in figure 1.9, takes as an input
a vector of 513 values, corresponding to the magnitude spectrum of a 1024-point
FFT of the mixture of voice and accompaniment.

This input z; is fed through three hidden layers, shown in figure 1.9 as h}, h?
and h?. The second hidden layer, h? is a recurrent layer, with activation at time ¢
given by:

h? = fu(we, hi_)) = oo(U?h}_ | + W2 (W'oyay)) (1.86)

Where W' is the weight matrix associated with a layer [ and U' is the weight
matrix for the recurrent connection at the [ — th layer. The output of the third
hidden layer is used to generate two vectors g;; and 9o, of the same size as the
input vector. The output predictions are used to calculate a soft time-frequency

mask as:
|91 (f)]
1916(f) + G2 (f)]

The estimated mask is then applied to the input mixture signal to estimate the
voice, y; and the accompaniment, j» using the equations:

U1 (f) = me(f)a(f) (1.88)
G2 (f) = (1 = mqu(f))ze(f) (1.89)

m(f) = (1.87)
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Figure 1.9: Framework proposed by [Huang et al., 2014]

To train the network, the researchers used a an objective function taking into
account the similarity between target sources and the corresponding estimated
target sources as well as dissimilarity between the estimated sources and the other
target source. This objective function is shown in equation 1.90

91 — yaell — YNG1e — voell + (|Gt — vorll — Y920 — yae| (1.90)

The model was tested on the MIR-1K [Jang, 2010] dataset, which contains a thou-
sand song clips with durations ranging from 4 to 13 seconds, encoded with a
sample rate of 16KHz. These song clips were extracted from Chinese karaoke
recordings, performed by two amateur singers, male and female. The model was
trained for a maximum of 400 epochs, from random initialization. To increase
the training samples, the researchers did a circular shift of the singing voice and
mixed the voice with the accompaniment. The researchers noted that the short
time Fourier transform provided better results than using log-mel filterbank fea-
tures or log power spectrum.

1.5 Convolutional Neural Networks In Image Pro-
cessing

Convolutional neural networks have been very effective in image processing fields
like object identification, etc One of the most interesting applications of convolu-
tional neural networks in the field is for automatic image colorization of grayscale
images. [Satoshi lizuka et al., 2016] The researchers implemented a three level
convolutional network, with a grayscale image as input, as shown in fig 1.11. The
network can be scaled to work with images of any size, represented here by height
H and Width W. For illustrative purposes, the input image is assumed to be of
size 224x224. The layers of the network are
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Figure 1.11: Network Architecture for Image Colorization, extracted from
[Satoshi lizuka et al., 2016]
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1. Low level features: this is a sub-network with 6 convolutional layers, which
computes low level features within an image, i.e.: performs convolution
over small areas of the network (3z3 filters) to detect features within a small
area of the input image. This layer feeds to both the layer for Mid Level
features and Global Level Features. The six layers are listed in the table

below:

H Type Kernel Stride Number Of Filters H

Conv 33 2x2 64

Conv  3z3 1z1 128
Conv  3z3 212 128
Conv  3x3 1lxl 256
Conv  3z3 2x2 256
Conv  3z3 1zl 512

The final output of the low level layer consists of 512 filters, with a size of

%x%. For an input of 2242224, this gives a layer of size 28228

. Mid Level Features: These features are computed using two convolutional
layers on the low level features. This is done by bottlenecking the 512 fea-
tures from the output of the low level features 256 mid level features, forc-
ing the network to learn a compact representation of the image. Since only
convolutional layers are used up to this point, the image can be regenerated
entirely from this representation.

H Type Kernel Stride Number Of Filters H

Conv 3z3 1x1 512
Conv 3z3 1x1 256

. Global Image Features: The low level features are processed by four convo-
lutional layers and three fully-connected layers, as shown in the table below

H Type Kernel Stride Number Of Filters H
Conv 3x3 222 512
Conv 3x3 1zl 512
Conv 33 222 512
Conv 3r3 121 512
Fully Connected - - 1024
Fully Connected - - 512
Fully Connected - - 256
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This leads to a 256 point compact representation of the input data.

4. Fusion Layer: The mid level layer and the global layer are fused together
in the fusion layer, leading to a layer which incorporates information from
both these layers. The output of the layer can be represented as:

yglobal

yljjjzsion =0 <b+ W‘ ymid

) (1.91)

5. Colorization Network: From the fusion layer, a colored image is recon-
structed using convolutions and upsampling:

H Type Kernel Stride Number Of Filters H

Fusion - - 256
Conv 3z3 1x1 128
Upsample - - 128
Conv 3x3 1zl 64
Conv 3x3 1zl 64
Upsample - - 64
Conv 3x3 1zl 32
Output 3z3 1x1 2

This leads to an output, representing the chrominance, half the size of the
input. This chrominance is combined with the input image to produce the
color image.

For training, the Mean Square Error function is used. Color images are first con-
verted to greyscale and input through the network to produce normalized CIR
L*a*b components, which are then compared with the original chrominance com-
ponents to calculate the loss to optimize the network. Further, the model also
classifies the objects seen in the image, through the Global Features Layer. This
allows the model to learn context from the input image.
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Chapter 2

METHODOLOGY

The model presented in this thesis tries to incorporate the underlying idea of NMF,
presented in section 1.1.2. The basis vector B learned in the NMF technique rep-
resents the timbrel structure of the instrument in question across one time frame,
while the activation gains G represent the evolution of this structure across time.
The NMF model tries to learn the basis vector for an instrument across the whole
spectrum, therefore for each note of an instrument, a separate basis vector has to
be learned. However, using convolutional neural networks, smaller, robust timbrel
structures can be learned across smaller subsections of the spectrogram.

Convolutional networks have the powerful ability to map features from a given
input. For Images, square shaped filters are usually used as a certain symmetry
is expected in a image across both the X and Y axis. However, for audio data,
the information contained across frequency bins is not the same as that across the
time axis. Therefore, we decided to have two convolutional layers in the model.
The first to model timbrel features along just the frequency axis and the second to
model the evolution of these features across time. The general model architecture
is presented in figure 2.2 and is similar to the one presented by suggested by
[Pons et al., 2016]. The aim of the network is to learn robust timbrel models for
generalized classes of instruments, in this case, voice, bass and drums. Further
details are presented the following section.

2.1 Proposed framework

The diagram for proposed source separation framework is presented in Figure
2.1. The Short-Time Fourier Transform (STFT) is computed on a segment of
time context 7' of the mixture audio. The resulting magnitude spectrogram is
then passed through the CNN, which outputs an estimate for each of the separated
sources. The estimate is used to compute time-frequency soft masks, which are
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Figure 2.1: Data Flow

applied to the magnitude spectrogram of the mixture to compute final magnitude
estimates for the sources. These estimates, along with the phase of the mixture,
are used to obtain the audio signals corresponding to the sources.

2.1.1 Convolution stage

This part of the network consists of two convolution layers and a max-pool layer.

1. Timbre Layer: This convolution layer has the shape (1, f1), spanning across

t time frame and taking into account f; frequency bins. This layer tries to
capture local timbre information, allowing the model to learn timbre fea-
tures. These features are shared among the sources to be separated, contrary
to the NMF approach, where specific basis and activation gains are derived
for each source. Therefore, the timber features learned by this layer need to
be robust enough to separate the required source across songs of different
genres where the type of instruemnts and singers might vary. /V; filters were
used in this layer.

. Max Pool Layer: This layer compresses information determined in the first
layer across frequency and time to attain a compact data representation. The
models are tested without pooling, with pooling across frequency and with
pooling across both frequency and time dimensions. The dimensions of the
pooling layer are represented as py, py.

. Temporal layer: This layer learns various types of temporal evolution for
different instruments from the features learned in the Timbre Features layer.
This is particularly useful for modeling time-frequency characteristics of
the different instruments present in the sources to be separated. Again, the
aim is to learn a robust representation for a general class of instruments.
The filter shape of this layer is (2, f2) and N filters were used.
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Figure 2.2: Network Architecture for Source Separation, Convolution Stage

Note that none of these layers have non-linearities and only convolutional layers
are used up to this point. This leads to a compact representation of the input
mixture, which can be fed to a fully connected layer for learning.

2.1.2 Fully Connected Layer

This is a fully connected ReLU layer which acts as a bottleneck, achieving di-
mensionality reduction [Sainath et al., 2012]. This layer consists of a non-linear
combination of the features learned from the previous layers, with a ReLU non-
linearity. The layer is chosen to have fewer elements to reduce the total parameters
of the network and to ensure that the network does not over-fit the data and is able
to produce a robust representation of the data. The number of nodes in the model
is represented as N N

2.1.3 Deconvolution network

The output of the first fully connected layer to another fully connected layer, with
a ReLU non-linearity and the same size as the output of the second convolution
layer. Thereafter, this layer is reshaped and passed through successive deconvolu-
tion and up-sampling layers, the inverse operations in the convolution stage. This
process is repeated to compute estimates, ¥,,;, for each of the sources, y,,;.

2.1.4 Time-frequency masking

As advocated in [Huang et al., 20141], it is desirable to integrate into the network
the computation of a soft mask for each of the sources. From the output of the
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network 7,,;(f), we can compute a soft mask as follows:

‘Qat(f)’
27]1\/:1 |@nt(f)‘

where 7, (f) represents the output of the network for the n'" source at time ¢ and
N is the total number of sources to be estimated.

The estimated mask is then applied to the input mixture signal to estimate the
sources y,.

mat(f) = 2.1

gn(f) = mat(f)ai(f) (2.2)

Where z,( f) is the spectrogram of the input mixture signal.

2.1.5 Parameter learning

The neural network was trained to optimize parameters using a Stochastic Gradi-
ent Descent with AdaDelta algorithm, as proposed in [Zeiler, 2012], in order to
minimize the squared error between the estimate and the original source.

N
Ly = Z |Gt — yntH2 (2.3)
i=1
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Chapter 3

EVALUATION

3.1 Dataset

For training and testing this architecture, the Demixing Secrets Dataset 100 (DSD100)
and Mixing Secrets Dataset 100 (MSD100) datasets were used. Both these datasets
consist of 100 professionally produced full track songs from the The Mixing Se-
crets Free Multitrack Download Library and are designed to evaluate signal source
separation from music recordings. The datasets contain separate tracks for drums,
bass, vocals and other instruments for each song in the set, present as stereo WAV
files with a sample rate of 44.1 kHz. The four source tracks are summed together
and normalized to create the mixture track for each song. The average duration of
a song in the dataset is 4 minutes and 10 seconds.

3.2 Training

Given the input mixture spectrogram and the spectrogram of the constituent sources,
optimization of the network is done using an Ada-delta algorithm [Zeiler, 2012] in
order to minimize the squared error between the estimate and the original source.
Lasagne, [Dieleman et al., 2015] a framework for neural networks built on top of
[Al-Rfou et al., 2016], was used for data flow and network training on a computer
with GeForce GTX TITAN X GPU, Intel Core 17-5820K 3.3GHz 6-Core Proces-
sor, X99 gaming 5 x99 ATX DDR44 motherboard.

3.3 Testing

Once the network was trained, the song examples from the Test set were passed
through it, to separate the mixture into four components: vocals, bass, drums and
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other. To do this, the STFT of the mixture was computed, using FrameSize of 1024
samples with a 75% overlap. The resulting magnitude spectrogram was split into
batches of 30 frames with 50% overlap. The batches were fedforward through
the network and the resulting source estimates were overlap-added to produce
the magnitude spectrogram for the estimate source. The audio for the respective
sources was computed using an ISTFT, with the phase spectrum of the original
mixture. For evaluation, the audio files was split into segments of 30 seconds with
50% overlap. The evaluation measures, SDR, SIR, SAR and ISR were computed
for these segments.

3.3.1 Adjustments To Learning Objective

After some initial experimentation, we observed that we needed to add an addi-
tional loss term representing the difference between the estimated sources, as used
by [Huang et al., 2014]. In addition, we observed that, across songs from differ-
ent genres, the instruments other than voice, bass and drums varied a lot and the
network was not able to efficiently learn a representation for this category as it
tries to learn a general timbre class instead of particularities of the different in-
struments. To overcome this problem, we used the estimated ’other’ source for
computing a difference, instead of considering it into the Lg,. This difference
encouraged between sources such as ’vocals’ and ’other’, *bass’ and ’other’ and
’drums’ and "other’. Also, we noted that the ’other’ source comprised of harmonic
instruments such as guitars and synths, which were similar to the ’vocals’ source.
To encourage difference between these two sources, a Loihervocars 108s €lement,
which represents the difference between the estimated vocals and the other stem,
was introduced.

N-1
Laigr = Y Gt — Gl (3.1)
i=1
Lothervocals = Hglt - yNt“2 (32)
n—1
Lother - Z ||gnt - yNtH2 (33)
=2
The total cost is then written as:
Ltotal = qu - CVLdiff - ﬁLother - BvocalsLothervocals (34)

y1: represents the source corresponding to vocals and yy; represents that cor-
responding to other instruments. The parameters «, 5 and 3¢5 Were experimen-
tally determined to be 0.001, 0.01 and 0.03 respectively.
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| Model |E |T [fl [NI[SI |MP|f2t [N2]S2 [ Alpha| Beta | Betavoice |

Model 1 | 30 | 30 [ 450 [ 50 | 1,1 | 1,2 | 10,1 | 30 | 1,1 | 0.001 | 0.01 | 0.03
Model 2 | 30 | 30 | 450 | 50 | 1,1 | 1,1 | 10,1 | 30 | 1,1 | 0.001 | 0.01 | 0.03
Model 3 | 30 | 30 | 50 |30 | 1,5| 1,2 205 |30 |1,10.001 | 0.01 |0.03
Model 4 | 30 |30 |50 |50 | 1,5] 12 |55 |50 |1,1]0.001 |0.01 |0.03
Model 5 | 30 | 30 |50 |30 [1,5|1,2 |55 |50 |1,1]0.001 |0.01 |0.03
Model 6 | 30 | 30 (30 (50 | 1,512 |55 |30 |1,10.001 | 0.01 |O0.03
Model 7 | 25130 30 (30 |1,5]|12 |55 |30 |1,10.001 |0.001|O0.1

Model 8 | 50 | 30 (30 (30 | 1,512 |55 |30 |1,10.001 | 0.01 |0.01
Model 9 | 50 | 30 {30 (30 | 1,512 |55 |30 |1,10.001 | 0.01 |O0.01

Table 3.1: Model Parameters

3.3.2 Experiments With MSD100 Dataset

Initial experiments were carried out with the MSD100 dataset to test the following
parameters:

1. Number of epochs used for training: £

2. Time context: T’

3. Timbrel features layer shape: f; and t,

4. Number of filters in timbrel features layer: N;
5. Stride for filter: S;

6. MaxPool: p;, py.

7. Evolution layer shape: f; and ¢

8. Number of filters in evolution layer: Ns

9. Stride for filter: S,

10. «

11. B

12. Bvocals

To this end, experiments were carried out with the parameters shown in Table
3.1
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Model Measure | Bass Drums Vocals Others
Model 1 | SDR 24427 | -0.5£1.7 | -1.1£5.2 | 1.0£1.2
SIR 73+4.4 | 08435 | 2.4+6.4 | 3.44+3.2
SAR 11.44+£3.0 | 0.1£1.6 | 2.8424 | 4.2+2.0
ISR 10.54£2.6 | 4.842.2 | 7.3£2.7 | 6.0£2.6
Model 2 | SDR 24426 | -0.5+£1.7 | -1.3£5.3 | 1.2+1.1
SIR 73+43 | 1.1+£3.5 | 2.24+6.6 | 3.5+3.2
SAR 11.3£2.9 | 0.2+1.7 | 2.24+6.6 | 3.7+1.9
ISR 10.64+2.6 | 4.84+2.2 | 7.6+2.8 | 5.6+2.4
Model 3 | SDR 2.1+2.8 | -0.7£14 | -1.3+£54 | 1.2+1.1
SIR 6.8+4.3 | -0.6+3.3 | 1.84+6.1 | 3.54+3.2
SAR 11.943.0 | 0.2+14 | 3.9+£2.2 | 3.9£2.1
ISR 10.0+2.2 | 4.8+2.2 | 8.0+£2.8 | 5.0+£2.3
Model 4 | SDR 22433 | -4.7+£4.9 | -0.7£5.7 | -1.0+1.7
SIR 57+42 | -8443.2 | -1.24+5.6 | 1.6+3.9
SAR 15242.8 | 10.8+1.4 | 8.7+1.3 | 8.3+14
ISR 10.7£1.4 | 4.84+2.2 | 6.64£2.5 | 2.34+2.6
Model 5 | SDR 22427 | -0.6£1.6 | -1.2+£54 | 1.2+1.2
SIR 7.0+43 | 03+3.4 | 2.24+6.5 | 3.6+3.2
SAR 11.44+3.0 | 0.1+1.4 | 3.542.5 | 3.74+2.0
ISR 104423 | 48+2.2 | 7.7£2.6 | 5.3+£2.3
Model 6 | SDR 254+2.7 | -0.7+1.7 | -1.0+£5.5 | 1.2+1.3
SIR 72444 | 0.0+£3.3 | 24463 | 34433
SAR 11.2+3.0 | 0.5£1.5 | 3.6+£2.5 | 4.242.1
ISR 10.64+2.3 | 4.842.2 | 7.442.7 | 5.64+2.6
Model 7 | SDR 23+2.8 | -0.6£1.6 | -1.1£5.2 | 1.1£1.2
SIR 7.1+4.4 | -034+3.5 | 2.846.6 | 3.61+3.2
SAR 11.843.1 | 09+1.3 | 294+2.7 | 4.34+2.2
ISR 10.44+2.2 | 4.842.2 | 7.042.7 | 5.542.5
Model 8 | SDR 22428 | -0.7£1.6 | -1.3£5.3 | 1.2+1.2
SIR 7.0+4.3 | 0.1£3.5 | 1.9£6.2 | 3.6+3.2
SAR 11.44+3.1 | 0.2+£1.5 | 3.4+2.5 | 3.84£2.1
ISR 10.3£2.1 | 4.842.2 | 7.942.8 | 5.242.3
Model 9 | SDR 22428 | -0.6£1.6 | -1.3£5.3 | 1.3£+1.2
SIR 7.0+43 | 0635 | 1.5+6.2 | 3.4+3.3
SAR 11.54£2.9 | -0.1£1.6 | 3.942.3 | 4.14£2.0
ISR 10.2+£2.2 | 4.8£2.2 | 7.942.8 | 5.242.3

Table 3.2: Comparison between models, values
Mean4Standard Deviation
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Figure 3.1: Box Plot comparing SDR for bass between models

Table 3.2 presents the mean SDR, SIR, SAR and ISR computed for the Test
set of the MSD100 dataset.

Figures 3.1, 3.2, 3.3 and 3.4 show box plot analysis for the SDR computed for
the different models proposed in the thesis. It can be seen that model 4, which
had 50 filters in both the first and second layer performed significantly poorly on
drums and other instrument separation, while the other models were more or less
level in terms of performance.

It can be seen from Table 3.2 that the optimal choice for N; and N, was 50
and 30 respectively as these are the lowest values of these parameters which does
not adversely effect the performance of the system. Similarly, the optimal choice
for the parameters «,  and Syocais Was determined to be 0.001, 0.01 and 0.03
respectively. Strides of 1, 1 in both layers were found to be efficient as no loss of
information was observed with these stride lengths.

3.3.3 Experiments With DSD100 Dataset, Low Latency Audio
Source Separation

After initial experiments with the MSD100 dataset, we decided to focus on op-
timizing the network for performance in a low-latency scenario. To do this, we
needed to minimize the total number of parameters that needed to be learned and
also experiment with the input time context. To this end, the following parameters
were tested: Time context 7" frames, Filter shapes, (¢1, f1) and (¢s, f2), Pooling
P+, pg, Number of nodes in the bottleneck, NN. The following shows the eval-
uation of select models for each of the four aforementioned sources plus the ac-
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Figure 3.2: Box Plot comparing SDR for drums between models
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Figure 3.3: Box Plot comparing SDR for vocals between models
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Figure 3.4: Box Plot comparing SDR for other instruments between models

companiment, which refers to the entire mix minus the vocals. The total number
of parameters to be optimized and the processing time (PT) for a batch of 7" time
frames for each model are also reported. The PT reported was calculated with-
out the use of the GPU, on the CPU. Only significant results for the Test set are
shown herewith, while a complete description of the experiments and results are
to be published soon in a paper for the LVA ICA conference.

Time Context

For this set of experiments, The time context was varied from 7" = 10, 15, 20, 25, 30, 40.
No max pooling was used and the timbre layer was chosen to have f; = 513, while

the temporal layer had ¢, = 7'/2. The number of units in the fully connected layer

was fixed to be NN = 512.

Results in Table 3.3 show that the performance of the system did not reduce
greatly while changing the input time context from 290 milliseconds to 116 mil-
liseconds. The processing time for the two cases shown is quite low, on the same
scale as the input time context.

Filter shapes and pooling

From the results of the time context experiments, it was seen that both time con-
texts 7' = 10 and T° = 25 deserved futher experimentation, in the form of the
shape of the filters of the two convolutional layers . Square shaped filters, which
are commonly used in image processing, with f; = ¢, and f, = ¢, were tried out
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H Model Number Measure | Bass Drums Vocals Others Accompanime
TC1 SDR 1.0+29 | 1.8+25 | 0.6+29 | 1.3+.1.2 | 42+.0.8
T =10, 116 milliseconds SIR 42+ 44 | 75+49 | 5.0+4.1 | 3.8+43.7 | 15.2+.3.6
125982+ Nx92341 parameters | SAR 6.4+22 | 72+27 | 69+24 | 2.5+2.1 | 13.5+3.2
PT = 190.4 milliseconds ISR 11.2+3.6 | 83+24 | 7.7+3.1 | 3.6+.1.4 | 6.4+_1.4
TC2 SDR 1.1+26 | 2.0+22 | 0.8+2.5 | 1.2+.1.1 | 4.1+.0.8
T = 25,290 milliseconds SIR 44+44 | 8.0+45 | 58+3.7 | 42+3.8 | 15.5+.3.6
259362+ Nx215461 parameters | SAR 6.8+2.1 | 72+28 | 7.0+2.8 | 1.9+2.6 | 13.9+3.2
PT = 290.3 milliseconds ISR 11.5+3.5 | 83+2.4 | 7.3+2.8 | 3.6+.1.6 | 6.2+_1.3

Table 3.3: Experiments with Time Context, values are presented in Decibels:
Mean-+Standard Deviation

H Model Number \ Measure \ Bass \ Drums \ Vocals \ Others \ Accompan
SP2T =10 SDR 1.342.7 | 2.0+£2.5 | 1.14£2.8 | 1.7£1.3 | 4.3+0.8
Square Filters, 3, 3 No Pooling SIR 4.6+4.0 | 8.0£4.9 | 8.2+3.8 | 7.0+4.0 | 17.5+3.6
PT = 1026.3 milliseconds SAR 6.2+2.1 | 74428 | 7.242.6 | 2.6£2.3 | 13.843.1
46924062+ Nx47001061 parameters | ISR 11.843.7 | 8.542.3 | 7.24£2.8 | 45+1.7 | 6.2+1.3
SP5T =25 SDR 1.3£2.5 | 29419 | 19424 | 1.8+1.3 | 4.34+0.7
Square Filters, 5, 5 Max Pool 2, 2 SIR 51442 | 97442 | 9.743.3 | 7.4+4.0 | 17.443.4
PT = 1524.3.4 milliseconds SAR 7.5£2.5 | 7.542.7 | 7.3£2.6 | 3.7£2.2 | 14.8£3.1
23079422+ Nx23085001 parameters | ISR 11.3£3.3 | 8.5+2.3 | 7.643.0 | 4.7£1.7 | 6.0£1.2

Table 3.4: Experiments with Filter Shapes And Pooling, values are presented in
Decibels: Mean+Standard Deviation

in these experiments. Pooling operations were done in both frequency and time.
The number of units in the fully connected layer was NN = 512.

Table 3.4 shows that while the total number of parameters to be learned and
the processing time required went up, square filters did not greatly improve per-
formance of the system. Given that we are aiming for a low-latency system, it was
therefore decided to avoid this shape of filters.

It should be noted that using max-pooling in both frequency and time had a
positive impact on results, whereas max-pooling in just one of the dimensions did
not. This also reduced the number of parameters to be learned, but not to the
extent that using horizontal and vertical filters does.

Bottleneck

The final set of experiments focuses on the number of hidden units in the fully
connected layer. The bottleneck is reduced down to 64 units and also increased
up to 100 times the input dimension.
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H Model Number Measure | Bass Drums | Vocals | Others | Accompaniment H
BN1T =25 SDR 0.94+2.7 | 2.442.0 | 1.3£2.4 | 0.8£1.5 | 3.7+0.8
NN =128 SIR 4.6+4.4 | 9.1£4.3 | 7.243.6 | 3.8+£4.0 | 14.7£3.5
PT = 160.8 milliseconds SAR 6.9+£2.3 | 7.0£2.8 | 5.3+£29 | 2.842.4 | 14.0+3.4
97698+ Nx54181 parameters ISR 11.5+3.4 | 8.542.2 | 7.3£3.0 | 44+1.7 | 6.1+1.3
BN3T =10 SDR 1.3£29 | 2.5£2.0 | 0.5£2.8 | 1.2+1.5 | 4.34+0.8
NN =100zTx513 SIR 44444 | 9.04+4.5 | 5.1£3.8 | 3.6+4.1 | 15.7£34
PT = 1469.7 milliseconds SAR 7.0£2.1 | 7.0£2.8 | 7.3£2.4 | 2.7+£2.2 | 13.6+3.0
92886310+ Nx92340181 parameters | ISR 11.24£3.5 | 85422 | 7.443.0 | 4.0+1.6 | 6.3£+1.3

Table 3.5: Experiments with Bottleneck, values are presented in Decibels:

Mean=Standard Deviation

It can be observed from Table 3.5 that reducing the bottleneck down to NN =
128 slightly improved the results over a bottleneck of NN = 512 and also consid-
erably reduced the number of parameters to be learned and the processing time.
On the other hand, increasing the bottleneck up to 100 times the input size did not
greatly improve the performance of the system while adding greatly to the num-
ber of parameters to be learned. Also, it was noted that combining the smaller
bottleneck with max pooling did not greatly influence the results.

47






Chapter 4

CONCLUSIONS, COMMENTS
AND FUTURE WORK

This chapter presents the findings of the experiments carried out and also discusses
some of interesting takeaways from these findings. Future work to improve the
system is also proposed here.

4.1 Comparison with state of the art

Comparison with state of the art algorithms is shown in Table 4.1, for experiments
on the MSD100 dataset. It can be seen that the proposed methodology improves
greatly on the results of [Huang et al., 2014], with a 8.4 dB gain in SDR and a 9
dB gain in SAR for vocals. The separation performance for the accompaniment
was similar for both models. Comparison with [Ozerov et al., 2012] and an ideal
mask is also shown. These figures were extracted from MUS 2015, a part of
SiSEC 2015.

Figure 4.1, shows the first and second layer filters learned by model 7. It
can be observed that the first layer learns some local frequency domain features
for a single time frame, which contain some peak structures. The second layer
learns evolution of these features along time. Further investigation on these fea-
tures will be undertaken in the coming months, but they can be seen analogous to
the filters learned by convolutional neural networks used for image classification,
[Krizhevsky et al., 2012b] shown in fig 4.2, which are observed to learn edges and
other image features.

49



Model Measure | Bass Drums Vocals Others Accompai
CNN SDR 2.61+2.5 -0.6+1.6 | -0.6+4.9 1.3+1.4 45+1.2
SIR 7.54+4.2 -0.3+3.6 | 1.9£6.2 3.4+33 14.9+5.6
SAR 117432 | 1.3+1.3 3.612.1 5.0£1.9 16.4+2.9
ISR 10.3+2.5 | 8.2+2.6 7.34+2.7 5.6£2.2 6.9+1.0
RNN [Huang et al., 2014] SDR - - -89+44 | - 41426
SIR - - 10.8 £3.1 | - 10.7 £ 3.¢
SAR - - -6.6 4.6 | - 12.1 4 3.6
ISR - - 48 +£28 |- 50+£3.0
FASST [Ozerov et al., 2012] | SDR 444+32 |-16£1.8|-1.8£58 | 1.1£0.7 |89+£32
SIR 53+43 | -58£30|-37+£75 |28+43 | 13.7+£3(
SAR 10022 | 12413 [43£14 1.8+1.6 13.1 £ 3.
ISR 117432 | 254+1.0 | 56+25 | 19+£09 | 13.5+£2:
Ideal Mask SDR 96+29 |45+12 |84+£20 |74+£20 |192£55
SIR 131 +40 | 87+27 | 165+3.0 | 10.6 =3.1 | 38.8% 18.
SAR 1304+£30|544+1.6 |9.6+25 | 1024+1.9 | 22.5+£ 5.
ISR 138+35|76+1.7 | 122+26 | 128 7.0 | 22.5+£ 5.
Table 4.1: Comparison with FASST and RNN models, extracted from

http://www.onn.nii.ac.jp/sisecl5/evaluation_result/

MUS/MUS2015.html. Values are presented in Decibels: Mean4Standard

Deviation
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Figure 4.2: Filters learned by convolutional neural networks used in image classi-
fication

4.2 Conclusions

A low latency online source separation algorithm using convolutional neural net-
works has been proposed and tested on the MSD100 and DSD100 datasets in this

thesis. The algorithm shows a significant improvement in results over [Huang et al., 2014],

while providing results on par with [Ozerov et al., 2012], with a significant im-
provement in processing time. Some of the main discoveries of the research are
the use of single dimension filters along the frequency domain, which find local
features and another convolution layer which follows the evolution of these fea-
tures. These convolution filters are more suited to the audio domain as opposed
to standard square filters used in image processing, improving greatly on process-
ing time which is a crucial factor for low-latency applications. Contrary to other
approaches, which try to model both the target instrument and other background
instruments, the presented algorithm just models the target source. The other
instruments stem is used primarily as a cost function, to encourage difference be-
tween the target source and other instruments. Finally, the cost for each of the
stems was monitored individually to ensure that the performance for each stem
improved over epochs and not just the contribution was not just from a reduction
in cost for one stream.

4.3 Future Work

The ground work has been laid for audio source separation using convolutional
neural networks, but there is room for improvement. The filters presented in figure
4.1 need to be analyzed to gain insight into what the system is learning. Also,
trying to feed context like predominant pitch for vocals might help performance,
as it does for [Satoshi lizuka et al., 2016]. Source separation in itself is not an
end goal but rather a stepping stone for other applications and this system can be
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modified to suit specific applications. We also plan to explore the applicability of
the presented algorithm to low-latency applications such as speech enhancement
for cochlear implants.
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