Phrase-based Rāga Recognition using Vector Space Modeling

Sankalp Gulati^{*}, Joan Serrà[^], Vignesh Ishwar^{*}, Sertan Şentürk^{*} and Xavier Serra^{*}

*Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain ^Telefonica Research, Barcelona, Spain

The 41st IEEE International Conference on Acoustics, Speech and Signal Processing Shanghai, China, 2016

Indian Art Music

Indian Art Music

Indian subcontinent: India, Pakistan, Bangladesh, Srilanka, Nepal and Bhutan

Indian Art Music

Indian Art Music: Hindustani music

Music Technology

Group

บท

Indian Art Music: Carnatic music

Rāga: melodic framework

Grammar for improvisation and composition

Automatic Rāga Recognition

Rāga Characterization: Svaras

Rāga Characterization: Svaras

Rāga Characterization: Svaras

- P. Chordia and S. Şentürk, "Joint recognition of raag and tonic in North Indian music," Computer Music Journal, vol. 37, no. 3, pp. 82–98, 2013.
- G. K. Koduri, S. Gulati, P. Rao, and X. Serra, "Rāga recognition based on pitch distribution methods," Journal of New Music Research, vol. 41, no. 4, pp. 337–350, 2012.

Music

Technology Group

Rāga Characterization: Intonation

Rāga Characterization: Intonation

G.K.Koduri,V.Ishwar,J.Serrà,andX.Serra,"Intonation analysis of rāgas in Carnatic music," Journal of New Music Research, vol. 43, no. 1, pp. 72–93, 2014.

Music

Technology Group

upt

□ H. G. Ranjani, S. Arthi, and T. V. Sreenivas, "Carnatic music analysis: Shadja, swara identification and raga verification in alapana using stochastic models," in IEEE WASPAA, 2011, pp. 29–32.

Rāga Characterization: Ārōh-Avrōh

Ascending-descending svara pattern; melodic progression

Rāga Characterization: Ārōh-Avrōh

Melodic Progression Templates N-gram Distribution Hidden Markov Model

- S. Shetty and K. K. Achary, "Raga mining of indian music by extracting arohana-avarohana pattern," Int. Journal of Recent Trends in Engineering, vol. 1, no. 1, pp. 362–366, 2009.
- V. Kumar, H Pandya, and C. V. Jawahar, "Identifying ragas in indian music," in 22nd Int. Conf. on Pattern Recognition (ICPR), 2014, pp. 767–772.
- P. V. Rajkumar, K. P. Saishankar, and M. John, "Identification of Carnatic raagas using hidden markov models," in IEEE 9th Int. Symposium on Applied Machine Intelligence and Informatics (SAMI), 2011, pp. 107–110.

up†

Technology Group

Rāga Characterization: Melodic motifs

Rāga Characterization: Melodic motifs

- R. Sridhar and T. V. Geetha, "Raga identification of carnatic music for music information retrieval," International Journal of Recent Trends in Engineering, vol. 1, no. 1, pp. 571–574, 2009.
- S. Dutta, S. PV Krishnaraj, and H. A. Murthy, "Raga verification in carnatic music using longest common segment set," in Int. Soc. for Music Information Retrieval Conf. (ISMIR), pp. 605-611,2015

Technology Group

Goal

□ Automatic rāga recognition

Goal

□ Automatic rāga recognition

Block Diagram: Proposed Approach

Block Diagram: Pattern Discovery

Block Diagram: Pattern Clustering

Block Diagram: Feature Extraction

Block Diagram: Pattern Discovery

Block Diagram: Pattern Discovery

Technology & Internet Based Systems - MIRA, Marrakesh, Morocco, 2014, pp. 264–271.

Proposed Approach: Pattern Discovery

Proposed Approach: Pattern Discovery

Proposed Approach: Pattern Discovery

Music

Technology Group

 $\mathbf{u}\boldsymbol{p}$

Block Diagram: Pattern Clustering

 M. EJ Newman, "The structure and function of complex networks," Society for Industrial and Applied Mathematics (SIAM) review, vol. 45, no. 2, pp. 167–256, 2003.

Music

Technology Group

 $\mathbf{u}\boldsymbol{p}$

- M. EJ Newman, "The structure and function of complex networks," Society for Industrial and Applied Mathematics (SIAM) review, vol. 45, no. 2, pp. 167–256, 2003.
- S. Maslov and K. Sneppen, "Specificity and stability in topology of protein networks," Science, vol. 296, no. 5569, pp. 910–913, 2002.

- V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, "Fast unfolding of communities in large networks," Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10, pp. P10008, 2008.
- S Fortunato, "Community detection in graphs," *Physics Reports*, vol. 486, no. 3, pp. 75–174, 2010.

- V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, "Fast unfolding of communities in large networks," Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10, pp. P10008, 2008.
- S Fortunato, "Community detection in graphs," *Physics Reports*, vol. 486, no. 3, pp. 75–174, 2010.

Block Diagram: Feature Extraction

Text/document classification

Term Frequency Inverse Document Frequency (TF-IDF)

Music

Group

$$\bullet \quad \mathbf{F}_1(p,r) = \begin{cases} 1, & \text{if } f(p,r) > 0\\ 0, & \text{otherwise} \end{cases}$$

$$\bullet \quad \mathbf{F}_1(p,r) = \begin{cases} 1, & \text{if } f(p,r) > 0\\ 0, & \text{otherwise} \end{cases}$$

$$\bullet \quad \mathbf{F}_2(p,r) = f(p,r)$$

$$\bullet \quad \mathbf{F}_1(p,r) = \begin{cases} 1, & \text{if } f(p,r) > 0\\ 0, & \text{otherwise} \end{cases}$$

$$\bullet \quad \mathbf{F}_2(p,r) = f(p,r)$$

F₃(p,r) = f(p,r) × irf(p,R)
irf(p,R) = log
$$\left(\frac{N}{|\{r \in R : p \in r\}|}\right)$$

- Corpus: CompMusic Carnatic music
 - Commercial released music (~325) CDs
 - Metadata available in Musicbrainz

- Corpus: CompMusic Carnatic music
 - Commercial released music (~325) CDs
 - Metadata available in Musicbrainz
- Datasets: subsets of corpus
 - DB40rāga
 - □ 480 audio recordings, 124 hours of music
 - □ 40 diverse set of rāgas
 - □ 310 compositions, 62 unique artists
 - DB10rāga
 - □ 10 rāga subset of DB40rāga

- Corpus: CompMusic Carnatic music
 - Commercial released music (~325) CDs
 - Metadata available in Musicbrainz
- Datasets: subsets of corpus
 - DB40rāga
 - □ 480 audio recordings, 124 hours of music
 - □ 40 diverse set of rāgas
 - □ 310 compositions, 62 unique artists
 - DB10rāga
 - □ 10 rāga subset of DB40rāga

http://compmusic.upf.edu/node/278

- Experimental setup
 - Stratified 12-fold cross validation (balanced)
 - Repeat experiment 20 times
 - Evaluation measure: mean classification accuracy

- Experimental setup
 - Stratified 12-fold cross validation (balanced)
 - Repeat experiment 20 times
 - Evaluation measure: mean classification accuracy
- Classifiers
 - Multinomial, Gaussian and Bernoulli naive Bayes (NBM, NBG and NBB)
 - SVM with a linear and RBF-kernel, and with a SGD learning (SVML, SVMR and SGD)
 - logistic regression (LR) and random forest (RF)

- Statistical significance
 - Mann-Whitney U test (*p* < 0.01)
 - Multiple comparisons: Holm Bonferroni method

- H. B. Mann and D. R. Whitney, "On a test of whether one of two random variables is stochastically larger than the other," The annals of mathematical statistics, vol. 18, no. 1, pp. 50–60, 1947.
- S. Holm, "A simple sequentially rejective multiple test procedure," Scandinavian journal of statistics, vol. 6, no. 2, pp. 65–70, 1979.

- Statistical significance
 - Mann-Whitney U test (*p* < 0.01)
 - Multiple comparisons: Holm Bonferroni method
- □ Comparison with the state-of-the-art
 - *S*₁: Pitch-class-distribution (PCD)-based method (PCD₁₂₀, PCD_{*full*})
 - *S*₂: Parameterized (PCD)-based method (PCD_{param})
- H. B. Mann and D. R. Whitney, "On a test of whether one of two random variables is stochastically larger than the other," The annals of mathematical statistics, vol. 18, no. 1, pp. 50–60, 1947.
- S. Holm, "A simple sequentially rejective multiple test procedure," Scandinavian journal of statistics, vol. 6, no. 2, pp. 65–70, 1979.
- P. Chordia and S. Şentürk, "Joint recognition of raag and tonic in North Indian music," Computer Music Journal, vol. 37, no. 3, pp. 82–98, 2013.
- G.K.Koduri, V.Ishwar, J.Serrà, and X.Serra, "Intonation analysis of rāgas in Carnatic music," Journal of New Music Research, vol. 43, no. 1, pp. 72–93, 2014.

Technology

db	Mtd	Ftr	NBM	NBB	LR	SVML	1NN
.āga	M	F_1	90.6	74	84.1	81.2	_
		F_2	91.7	73.8	84.8	81.2	-
10_{1}		F_3	90.5	74.5	84.3	80.7	-
DB	S_1	PCD_{120}	-	-	-	-	82.2
		PCD_{full}	-	-	-	-	89.5
	S_2	PD_{param}	37.9	11.2	70.1	65.7	-
a	M	F_1	69.6	61.3	55.9	54.6	_
DB40rāg		F_2	69.6	61.7	55.7	54.3	-
		F_3	69.5	61.5	55.9	54.5	-
	S_1	PCD_{120}	-	-	-	-	66.4
		PCD_{full}	_	-	-	-	74.1
	S_2	\overline{PD}_{param}	20.8	2.6	51.4	44.2	_

db	Mtd	Ftr	NBM	NBB	LR	SVML	1NN
īāga	M	F_1	90.6	74	84.1	81.2	_
		F_2	91.7	73.8	84.8	81.2	-
10_1		F_3	90.5	74.5	84.3	80.7	-
DB	S_1	PCD_{120}	-	_	-	-	82.2
		PCD_{full}	_	-	-	-	89.5
	S_2	PD_{param}	37.9	11.2	70.1	65.7	-
DB40raga	M	$\mathbf{F_1}$	69.6	61.3	55.9	54.6	_
		${ m F_2}$	69.6	61.7	55.7	54.3	-
		F_3	69.5	61.5	55.9	54.5	_
	S_1	PCD_{120}	_	_	_	-	66.4
		PCD_{full}	-	-	_	-	74.1
	S_2	PD_{param}	20.8	2.6	51.4	44.2	_

db	Mtd	Ftr	NBM	NBB	LR	SVML	1NN
a a	M	F_1	90.6	74	84.1	81.2	_
ក្រុខ		F_2	91.7	73.8	84.8	81.2	-
101		F_3	90.5	74.5	84.3	80.7	_
DB	S_1	PCD_{120}	-	_	_	-	82.2
		PCD_{full}	_	-	-	-	89.5
	S_2	PD_{param}	37.9	11.2	70.1	65.7	-
3	M	${ m F_1}$	69.6	61.3	55.9	54.6	_
DB40rāg		${ m F_2}$	69.6	61.7	55.7	54.3	-
		F_3	69.5	61.5	55.9	54.5	_
	S_1	PCD_{120}	_	_	_	-	66.4
		PCD_{full}	_	_	_	_	74.1
	S_2	PD_{param}	20.8	2.6	51.4	44.2	_

db	Mtd	Ftr	NBM	NBB	LR	SVML	1NN
ลีธูล	M	F_1	90.6	74	84.1	81.2	_
		${ m F_2}$	91.7	73.8	84.8	81.2	-
101		\mathbf{F}_{3}	90.5	74.5	84.3	80.7	-
B	S.	PCD_{120}	_	_	-	-	82.2
	\mathcal{D}_1	PCD_{full}	_	_	_	-	89.5
	S_2	PD_{param}	37.9	11.2	70.1	65.7	_
DB40rāga	M	F_1	69.6	61.3	55.9	54.6	_
		F_2	69.6	61.7	55.7	54.3	-
		F_3	69.5	61.5	55.9	54.5	-
	S_1	PCD_{120}	-	_	_	-	66.4
		PCD_{full}	_	_	-	-	74.1
	S_2	PD_{param}	20.8	2.6	51.4	44.2	-

db	Mtd	Ftr	NBM	NBB	LR	SVML	1NN
aga	M	F_{1}	90.6	74	84.1	81.2	_
		${ m F_2}$	91.7	73.8	84.8	81.2	-
101		F_3	90.5	74.5	84.3	80.7	-
B	S.	PCD_{120}	-	_	-	-	82.2
	D_1	PCD_{full}	-	_	_	_	89.5
	S_2	PD_{param}	37.9	11.2	70.1	65.7	_
DB40rāga	M	F_1	69.6	61.3	55.9	54.6	-
		F_2	69.6	61.7	55.7	54.3	-
		F_3	69.5	61.5	55.9	54.5	_
	S_1	PCD_{120}	_	_	_	-	66.4
		PCD_{full}	-	-	_		74.1
	S_2	PD_{param}	20.8	2.6	51.4	44.2	-

Error Analysis

Kalyāņi Varāļi Tōḍi Pūrvikalyāņi

Error Analysis

Allied rāgas

Error Analysis: complementary with S₁

 $M(\mathbf{F}_1)$ R1-Sindhubhai 2-Sencurutti 13-Anandab 0-Dēvagā kitigau 8 4-Bilahar L-Bhaira Varāli Sāma 7-Kāpi R2 9 1 1 12 R3 R4 9 1 R5 1 1 R6 R7 1 3 R8 2 1 1 R9 1 1 R10 R11 R12 1:1 1 R13 10.1 R14 1 1 1 1 R15 2 2 1 R16 2 R17 2 1 1:1 1 1 1 R18 R19 R20 1 1 1 R21 2:1: 1 1 R22 1 1 1:1: R23 1 1 1 1 R24 1 R25 R26 R27 2 2 R28 1 R29 1 R30 R31 2 1 R32 2 1 1 R33 1 2 R34 1 1 R35 2 1:1 R36 111 1 1 11 R37 1 13 R38 1 2 R39 1 R/10 1 1 3 1 11

10

11

12

 $S_l (\text{PCD}_{full})$ Irutti Burvikaly -Kēdārad: Aāvāmā 8-Nāta R2 1 3 2 R3 R4 3 4 1 R5 1 13 1 R6 1 1 1 R7 1 1 R8 1 R9 R10 3 1 11 8 11 11 R11 1 R12 3 R13 1 : R14 1 R15 1 R16 4 R17 1 1 1 R18 9 11 12 2 R19 1 R20 1 R21 R22 1 R23 2 R24 R25 R26 R27 1 1 R28 4 1 2 R29 1 1 R30 1:1 1 R31 1 R32 1 R33 1 4 R34 1 1 : 1 R35 1:1 R36 R37 R38 R39 2:1 1 13 R40 1

Music

Technology Group

upt

Phrase-based rāga recognition using VSM is a successful strategy

- Phrase-based rāga recognition using VSM is a successful strategy
- Mere presence/absence of melodic phrases is enough to recognize rāga

- Phrase-based rāga recognition using VSM is a successful strategy
- Mere presence/absence of melodic phrases enough to recognize rāga
- Multinomial Naive Bayes classifier outperforms the rest

- Phrase-based rāga recognition using VSM is a successful strategy
- Mere presence/absence of melodic phrases enough to recognize rāga
- Multinomial Naive Bayes classifier outperforms the rest
- Topological properties of network similarity threshold

- Phrase-based rāga recognition using VSM is a successful strategy
- Mere presence/absence of melodic phrases enough to recognize rāga
- Multinomial Naive Bayes classifier outperforms the rest
- Topological properties of network similarity threshold
- Complementary errors in prediction compared to PCD-based methods (Future Work)

Resources

- □ Rāga dataset:
 - http://compmusic.upf.edu/node/278

Demo:

<u>http://dunya.compmusic.upf.edu/pattern_network/</u>

□ CompMusic:

- http://compmusic.upf.edu/
- Related datasets:
 - http://compmusic.upf.edu/datasets

Resources

🗖 Rāga dataset

Hode Idt 4019 Tieler Yulden Hepiteen Gerenerte Dezenior Jasser 200 Artiket Accella Floral Reger Higols Tarde 1911s P Blart-dener 19 s End-dener 19 s

Resources

- □ Rāga dataset:
 - http://compmusic.upf.edu/node/278

Demo:

http://dunya.compmusic.upf.edu/pattern_network/

□ CompMusic (Project):

http://compmusic.upf.edu/

□ Related datasets:

<u>http://compmusic.upf.edu/datasets</u>

Phrase-based Rāga Recognition using Vector Space Modeling

Sankalp Gulati^{*}, Joan Serrà[^], Vignesh Ishwar^{*}, Sertan Şentürk^{*} and Xavier Serra^{*}

*Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain ^Telefonica Research, Barcelona, Spain

The 41st IEEE International Conference on Acoustics, Speech and Signal Processing Shanghai, China, 2016

