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Rāga: melodic framework 
q  Grammar for improvisation and composition 
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q  P. Chordia and S. Şentürk, “Joint recognition of raag and tonic in North Indian music,” Computer Music Journal, vol. 
37, no. 3, pp. 82–98, 2013. 
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q  G.K.Koduri,V.Ishwar,J.Serrà,andX.Serra,“Intonation analysis of rāgas in Carnatic music,” Journal of New Music 
Research, vol. 43, no. 1, pp. 72–93, 2014. 

q  H. G. Ranjani, S. Arthi, and T. V. Sreenivas, “Carnatic music analysis: Shadja, swara identification and raga 
verification in alapana using stochastic models,” in IEEE WASPAA, 2011, pp. 29–32. 
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q  S. Shetty and K. K. Achary, “Raga mining of indian music by extracting arohana-avarohana pattern,” Int. 
Journal of Recent Trends in Engineering, vol. 1, no. 1, pp. 362–366, 2009. 

q  V. Kumar, H Pandya, and C. V. Jawahar, “Identifying ragas in indian music,” in 22nd Int. Conf. on Pattern 
Recognition (ICPR), 2014, pp. 767–772. 

q  P. V. Rajkumar, K. P. Saishankar, and M. John, “Identification of Carnatic raagas using hidden markov 
models,” in IEEE 9th Int. Symposium on Applied Machine Intelligence and Informatics (SAMI), 2011, pp. 
107–110. 
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Rāga Characterization: Melodic motifs 

q  R. Sridhar and T. V. Geetha, “Raga identification of carnatic music for music information retrieval,” 
International Journal of Recent Trends in Engineering, vol. 1, no. 1, pp. 571–574, 2009. 

q  S. Dutta, S. PV Krishnaraj, and H. A. Murthy, “Raga verification in carnatic music using longest common 
segment set,” in Int. Soc. for Music Information Retrieval Conf. (ISMIR), pp.  605-611,2015 
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Results 

where, f(p, r) denotes the raw frequency of occurrence of phrase
p in recording r. F1 only considers the presence or absence of a
phrase in a recording. In order to investigate if the frequency of oc-
currence of melodic phrases is relevant for characterizing rāgas, we
take F2(p, r) = f(p, r). As mentioned, the melodic phrases that
occur across different rāgas and in several recordings are futile for
rāga recognition. Therefore, to reduce their effect in the feature vec-
tor we employ a weighting scheme, similar to the inverse document
frequency (idf) weighting in text retrieval.

F3(p, r) = f(p, r)⇥ irf(p,R) (2)

irf(p,R) = log

✓
N

|{r 2 R : p 2 r}|

◆
(3)

where, |{r 2 R : p 2 r}| is the number of recordings where the
melodic phrase p is present, that is f(p, r) 6= 0 for these recordings.
We denote our proposed method by M

3. EVALUATION

3.1. Music Collection

The music collection used in this study is compiled as a part of the
CompMusic project [26–28]. The collection comprises 124 hours of
commercially available audio recordings of Carnatic music belong-
ing to 40 rāgas. For each rāga, there are 12 music pieces, which
amounts to a total of 480 recordings. All the editorial metadata for
each audio recording is publicly available in Musicbrainz3, an open-
source metadata repository. The music collection primarily consists
of vocal performances of 62 different artists. There are a total of 310
different compositions belonging to diverse forms in Carnatic music
(for example kīrtana, varnam, virtuttam). The chosen rāgas contain
diverse set of svaras (note), both in terms of the number of svaras and
their pitch-classes (svarasthānās). To facilitate comparative studies
and promote reproducible research we make this music collection
publicly available online4.

From this music collection we build two datasets, which we de-
note by DB40rāga and DB10rāga. DB40rāga comprises the entire
music collection and DB10rāga comprises a subset of 10 rāgas. We
use DB10rāga to make our results more comparable to studies where
the evaluations are performed on similar number of rāgas.

3.2. Classification and Evaluation Methodology

The features obtained above are used to train a classifier. In order
to assess the relevance of these features for rāga recognition, we ex-
periment with different algorithms exploiting diverse classification
strategies [29]: Multinomial, Gaussian and Bernoulli naive Bayes
(NBM, NBG and NBB, respectively), support vector machines with
a linear and a radial basis function kernel, and with a stochastic gra-
dient descent learning (SVML, SVMR and SGD, respectively), lo-
gistic regression (LR) and random forest (RF). We use the imple-
mentation of these classifiers available in scikit-learn toolkit [30],
version 0.15.1. Since in this study, our focus is to extract a musically
relevant set of features based on melodic phrases, we use the default
parameter settings for the classifiers available in scikit-learn.

We use a stratified 12-fold cross-validation methodology for
evaluations. The folds are generated such that every fold comprises
equal number of feature instances per rāga. We repeat the entire
experiment 20 times, and report the mean classification accuracy as

3https://musicbrainz.org
4http://compmusic.upf.edu/node/278

db Mtd Ftr NBM NBB LR SVML 1NN

D
B

10
rā

ga M
F1 90.6 74 84.1 81.2 -
F2 91.7 73.8 84.8 81.2 -
F3 90.5 74.5 84.3 80.7 -

S1
PCD120 - - - - 82.2
PCDfull - - - - 89.5

S2 PDparam 37.9 11.2 70.1 65.7 -

D
B

40
rā

ga M
F1 69.6 61.3 55.9 54.6 -
F2 69.6 61.7 55.7 54.3 -
F3 69.5 61.5 55.9 54.5 -

S1
PCD120 - - - - 66.4
PCDfull - - - - 74.1

S2 PDparam 20.8 2.6 51.4 44.2 -

Table 1. Accuracy (in percentage) of different methods (Mtd) for
two datasets (db) using different classifiers and features (Ftr).

the evaluation measure. In order to assess if the difference in the
performance of any two methods is statistically significant, we use
the Mann-Whitney U test [31] with p = 0.01. In addition, to com-
pensate for multiple comparisons, we apply the Holm-Bonferroni
method [32].

3.3. Comparison with the state of the art

We compare our results with two state of the art methods proposed
in [7] and [12]. As an input to these methods, we use the same
predominant melody and tonic as used in our method. The method
in [7] uses smoothened pitch-class distribution (PCD) as the tonal
feature and employs 1-nearest neighbor classifier (1NN) using Bhat-
tacharyya distance for predicting rāga label. We denote this method
by S1. The authors in [7] report a window size of 120 s as an opti-
mal duration for computing PCDs (denoted here by PCD120). How-
ever, we also experiment with PCDs computed over the entire audio
recording (denoted here by PCDfull). Note that in [7] the authors
do not experiment with a window size larger than 120 s.

The method proposed in [12] also uses features based on pitch
distribution. However, unlike in [7], the authors use parameterized
pitch distribution of individual svaras as features (denoted here by
PDparam). We denote this method by S2. The authors of both these
papers courteously ran the experiments on our dataset using the orig-
inal implementations of the methods.

4. RESULTS AND DISCUSSION

In Table 1, we present the results of our proposed method M and the
two state of the art methods S1 and S2 for the two datasets DB10rāga
and DB40rāga. The highest accuracy for every method is highlighted
in bold for both the datasets. Due to lack of space we present results
only for the best performing classifiers.

We start by analyzing the results of the variants of M . From Ta-
ble 1, we see that the highest accuracy obtained by M for DB10rāga
is 91.7%. Compared to DB10rāga, there is a significant drop in the
performance of every variant of M for DB40rāga. The best perform-
ing variant in the latter achieves 69.6% accuracy. We also see that
for both the datasets, the accuracy obtained by M across the feature
sets is nearly the same for each classifier, with no statistically sig-
nificant difference. This suggests that, considering just the presence
or the absence of a melodic phrase, irrespective of its frequency of
occurrence, is sufficient for rāga recognition. Interestingly, this find-
ing is consistent with the fact that characteristic melodic phrases are
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where, f(p, r) denotes the raw frequency of occurrence of phrase
p in recording r. F1 only considers the presence or absence of a
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We denote our proposed method by M

3. EVALUATION

3.1. Music Collection

The music collection used in this study is compiled as a part of the
CompMusic project [26–28]. The collection comprises 124 hours of
commercially available audio recordings of Carnatic music belong-
ing to 40 rāgas. For each rāga, there are 12 music pieces, which
amounts to a total of 480 recordings. All the editorial metadata for
each audio recording is publicly available in Musicbrainz3, an open-
source metadata repository. The music collection primarily consists
of vocal performances of 62 different artists. There are a total of 310
different compositions belonging to diverse forms in Carnatic music
(for example kīrtana, varnam, virtuttam). The chosen rāgas contain
diverse set of svaras (note), both in terms of the number of svaras and
their pitch-classes (svarasthānās). To facilitate comparative studies
and promote reproducible research we make this music collection
publicly available online4.

From this music collection we build two datasets, which we de-
note by DB40rāga and DB10rāga. DB40rāga comprises the entire
music collection and DB10rāga comprises a subset of 10 rāgas. We
use DB10rāga to make our results more comparable to studies where
the evaluations are performed on similar number of rāgas.

3.2. Classification and Evaluation Methodology

The features obtained above are used to train a classifier. In order
to assess the relevance of these features for rāga recognition, we ex-
periment with different algorithms exploiting diverse classification
strategies [29]: Multinomial, Gaussian and Bernoulli naive Bayes
(NBM, NBG and NBB, respectively), support vector machines with
a linear and a radial basis function kernel, and with a stochastic gra-
dient descent learning (SVML, SVMR and SGD, respectively), lo-
gistic regression (LR) and random forest (RF). We use the imple-
mentation of these classifiers available in scikit-learn toolkit [30],
version 0.15.1. Since in this study, our focus is to extract a musically
relevant set of features based on melodic phrases, we use the default
parameter settings for the classifiers available in scikit-learn.

We use a stratified 12-fold cross-validation methodology for
evaluations. The folds are generated such that every fold comprises
equal number of feature instances per rāga. We repeat the entire
experiment 20 times, and report the mean classification accuracy as
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S1
PCD120 - - - - 66.4
PCDfull - - - - 74.1

S2 PDparam 20.8 2.6 51.4 44.2 -

Table 1. Accuracy (in percentage) of different methods (Mtd) for
two datasets (db) using different classifiers and features (Ftr).

the evaluation measure. In order to assess if the difference in the
performance of any two methods is statistically significant, we use
the Mann-Whitney U test [31] with p = 0.01. In addition, to com-
pensate for multiple comparisons, we apply the Holm-Bonferroni
method [32].

3.3. Comparison with the state of the art

We compare our results with two state of the art methods proposed
in [7] and [12]. As an input to these methods, we use the same
predominant melody and tonic as used in our method. The method
in [7] uses smoothened pitch-class distribution (PCD) as the tonal
feature and employs 1-nearest neighbor classifier (1NN) using Bhat-
tacharyya distance for predicting rāga label. We denote this method
by S1. The authors in [7] report a window size of 120 s as an opti-
mal duration for computing PCDs (denoted here by PCD120). How-
ever, we also experiment with PCDs computed over the entire audio
recording (denoted here by PCDfull). Note that in [7] the authors
do not experiment with a window size larger than 120 s.

The method proposed in [12] also uses features based on pitch
distribution. However, unlike in [7], the authors use parameterized
pitch distribution of individual svaras as features (denoted here by
PDparam). We denote this method by S2. The authors of both these
papers courteously ran the experiments on our dataset using the orig-
inal implementations of the methods.

4. RESULTS AND DISCUSSION

In Table 1, we present the results of our proposed method M and the
two state of the art methods S1 and S2 for the two datasets DB10rāga
and DB40rāga. The highest accuracy for every method is highlighted
in bold for both the datasets. Due to lack of space we present results
only for the best performing classifiers.

We start by analyzing the results of the variants of M . From Ta-
ble 1, we see that the highest accuracy obtained by M for DB10rāga
is 91.7%. Compared to DB10rāga, there is a significant drop in the
performance of every variant of M for DB40rāga. The best perform-
ing variant in the latter achieves 69.6% accuracy. We also see that
for both the datasets, the accuracy obtained by M across the feature
sets is nearly the same for each classifier, with no statistically sig-
nificant difference. This suggests that, considering just the presence
or the absence of a melodic phrase, irrespective of its frequency of
occurrence, is sufficient for rāga recognition. Interestingly, this find-
ing is consistent with the fact that characteristic melodic phrases are
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p in recording r. F1 only considers the presence or absence of a
phrase in a recording. In order to investigate if the frequency of oc-
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3.2. Classification and Evaluation Methodology

The features obtained above are used to train a classifier. In order
to assess the relevance of these features for rāga recognition, we ex-
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occurrence, is sufficient for rāga recognition. Interestingly, this find-
ing is consistent with the fact that characteristic melodic phrases are



Results 

where, f(p, r) denotes the raw frequency of occurrence of phrase
p in recording r. F1 only considers the presence or absence of a
phrase in a recording. In order to investigate if the frequency of oc-
currence of melodic phrases is relevant for characterizing rāgas, we
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their pitch-classes (svarasthānās). To facilitate comparative studies
and promote reproducible research we make this music collection
publicly available online4.

From this music collection we build two datasets, which we de-
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The features obtained above are used to train a classifier. In order
to assess the relevance of these features for rāga recognition, we ex-
periment with different algorithms exploiting diverse classification
strategies [29]: Multinomial, Gaussian and Bernoulli naive Bayes
(NBM, NBG and NBB, respectively), support vector machines with
a linear and a radial basis function kernel, and with a stochastic gra-
dient descent learning (SVML, SVMR and SGD, respectively), lo-
gistic regression (LR) and random forest (RF). We use the imple-
mentation of these classifiers available in scikit-learn toolkit [30],
version 0.15.1. Since in this study, our focus is to extract a musically
relevant set of features based on melodic phrases, we use the default
parameter settings for the classifiers available in scikit-learn.
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evaluations. The folds are generated such that every fold comprises
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in bold for both the datasets. Due to lack of space we present results
only for the best performing classifiers.
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ble 1, we see that the highest accuracy obtained by M for DB10rāga
is 91.7%. Compared to DB10rāga, there is a significant drop in the
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for both the datasets, the accuracy obtained by M across the feature
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occurrence, is sufficient for rāga recognition. Interestingly, this find-
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rāga recognition. Therefore, to reduce their effect in the feature vec-
tor we employ a weighting scheme, similar to the inverse document
frequency (idf) weighting in text retrieval.

F3(p, r) = f(p, r)⇥ irf(p,R) (2)

irf(p,R) = log

✓
N

|{r 2 R : p 2 r}|

◆
(3)

where, |{r 2 R : p 2 r}| is the number of recordings where the
melodic phrase p is present, that is f(p, r) 6= 0 for these recordings.
We denote our proposed method by M

3. EVALUATION

3.1. Music Collection

The music collection used in this study is compiled as a part of the
CompMusic project [26–28]. The collection comprises 124 hours of
commercially available audio recordings of Carnatic music belong-
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