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Abstract 
 

We present an automatic genre classification system based on melodic features. First a 

ground truth genre dataset composed of polyphonic music excerpts is compiled. 

Predominant melodic pitch contours are then estimated, from which a series of 

descriptors is extracted. These features are related to melody pitch, variation and 

expressiveness (e.g. vibrato characteristics, pitch distributions, contour shape classes). 

We compare different standard classification algorithms to automatically classify genre 

using the extracted features. Finally, the model is evaluated and refined, and a working 

prototype is implemented. 

The results show that the set of melody descriptors developed is robust and reliable. 

They also reveal that complementing low level timbre features with high level melody 

features is a promising direction for genre classification. 
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1. Introduction 
 

 
1.1 Overview 
 

The goal of this project was to build a genre classifier using melody features extracted 

from predominant melodic pitch contours, estimated from polyphonic music audio 

signals. The classifier focuses on differentiating between distinct singing styles such as 

pop, jazz or opera. It uses existing technology for predominant pitch contour estimation 

from polyphonic material. The project also generated a ground truth dataset for system 

evaluation. 

 

This chapter provides a brief introduction to the thesis, stating its goals and the 

motivation behind the project. In chapter 2 we review the state-of-the-art. The 

methodology is described in chapter 3. In chapter 4 we discuss the results and then we 

make some conclusions and propose future work in chapter 5. 

 

 
1.2 Motivation 
 

Listeners try to describe music with words. One of the notions most people use is 

melody, but can anyone define it? People also tend to classify the world around them 

into categories. Music is no exception. Musical genres are the main top-level descriptors 

used by music dealers and librarians to organize their music collections. Though they 

may represent a simplification of one artist’s musical discourse, they are of a great 

interest as summaries of some shared characteristics in music pieces (Scaringella, Zoia 

& Mlynek, 2006). Possible definitions for both concepts are provided in this thesis. 

 

“Ever since the emergence of digital signal processing, researchers have been using 

computers to analyze musical recordings, but it has proven more challenging than 

expected to recognize the kinds of aspects (...) that are usually trivial for listeners” 

(Poliner et al., 2007). The field of Music Information Retrieval (MIR) has significantly 
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contributed to the advances made in our ability to describe music through computational 

approaches. 

 

The main reason behind this project was the same that led me to apply for this master: 

the possibility of combining my musical background with the technologies developed at 

the Music Technology Group (MTG) of this university. 

 

Another motive was the possibility of classifying musical genre using mid and high 

level features. Figure 1 depicts all the disciplines related to MIR. Guaus (2009) states 

that for automatic genre classification of music we need information from digital, 

symbolic and semantic levels. Most attempts to classify genre have been dealing with 

low-level timbral and spectral features. Some have tried also tonal and rhythm features, 

but, to our knowledge, melody features have not been used before. Lately, some 

researchers have incorporated source separation techniques to improve this task. 

Melody features have the advantage of making more sense to users than traditional low 

level features, also allowing us to easily interpret results. 

 

 
Figure 1: Simplified version of the MIR map proposed by Fingerhut and Donin (as depicted in Guaus, 2009) 
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1.3 Goals 
 

The main goals of this thesis are: 

• Provide a state-of-the-art review in the fields of the singing voice, melody 

description and genre classification; 

• Build a genre classifier using melody features extracted from predominant 

melodic pitch contours, estimated from polyphonic music audio signals; 

• Achieve a set of reliable melody descriptors; 

• Generate a ground truth dataset for system evaluation; 

• Evaluate our method employing different datasets and compare it to other 

approaches; 

• Fuse low level and mid/high level descriptors to see if the accuracy of the 

system improves; 

• Discuss the results, finish off the work carried out and propose future work. 
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2. State-of-the-art Review 
 

This state-of-the-art review aims to analyse current research on the most significant 

areas related to this thesis. It covers subjects such as the acoustics of the singing voice 

(section 2.2), different singing styles (section 2.3), automatic melody description 

(section 2.4) and genre classification (section 2.5). 

 

 
2.1  Definitions 
 

Before going further, we need to clarify some relevant terms used in this work that have 

no consensual definition. 

 

a) Melody 
 

Melody is a musicological concept based on the judgment of human listeners (Poliner et 

al., 2007), and its definition can change according to culture or context. The same 

authors propose the definition adopted in this work: 

"(…) the melody is the single (monophonic) pitch sequence that a 

listener might reproduce if asked to whistle or hum a piece of polyphonic 

music, and that the listener would recognise as being the 'essence' of that 

music when heard in comparison". 

 

b) Musical Genre 
 

Musical genre is a concept that is discussed by every music lover and, generally, never 

agreed on. For simplicity, we adopt Guaus (2009) definition in this paper: 

"the term used to describe music that has similar properties, in those 

aspects of music that differ from the others". 
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2.2  Acoustics of the Singing Voice 
 

a) The Voice Source 
 

The voice organ includes the lungs, larynx, pharynx, mouth and nose. Analysing the 

voice organ as a sound generator, three main parts can be distinguished: a generator (the 

respiratory system), an oscillator (the vocal folds) and a resonator (the vocal tract). An 

air stream is generated when the lungs are compressed, if the airways are open. This air 

stream sets the vocal folds vibrating, creating a pulsating air flow, the voice source, 

which is controlled by the air pressure in the lungs and the vocal folds. The voice source 

is a chord of simultaneously sounding tones of different frequencies and amplitudes. 

This sound is filtered by the vocal tract, which has the function of acoustically forming 

the output sound. We call the vocal tract resonances formants. Each formant produces a 

peak in the frequency curve of the vocal tract. The properties of the voice source plus 

the frequencies of the formants determine the vowel quality and the personal timbre we 

perceive in a voice (Sundberg, 2000). 

Figure 2: The voice organ (Bonada & Serra, 2007) 
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b) Pitch 
 

Pitch is a perceptual concept and is distinct from fundamental frequency. For the sake of 

simplicity, in this thesis we use both concepts interchangeably.  

 

The pitch of the human voices is determined by the frequency with which vocal folds 

vibrate. The artistically acceptable range for most singers is two to two-and-a-half 

octaves although they can produce notes of higher and lower pitch (Bunch, 1997). 

According to Sundberg (2000), the approximate ranges covered by the main voice types 

are: 

 

Voice Type Frequency Range 

Bass 80 – 330 Hz 

Tenor 123 – 520 Hz 

Alto 175 – 700 Hz 

Soprano 260 – 1300 Hz 

Table 1: Approximate frequency ranges covered by the main voice types (Sundberg, 2000) 

 

The vocal folds vibrate in different modes according to the pitch that is being produced. 

These modes are called vocal registers. There are at least three registers: vocal fry, chest 

(or modal) and falsetto. 

 

c) Vibrato 
 

One of the most controversial aspects of singing is the role played by vocal 

tremulousness: should the voice be steady or should it exhibit some form of 

tremulousness? (Stark, 1999). Stark concludes that vocal tremulousness has been an 

important component in good singing since at least the early Baroque period. 

 

The most familiar form of tremulousness is today known as vibrato. Vibrato is a voice 

source characteristic of the trained singing voice. It corresponds to an almost sinusoidal 

modulation of the fundamental frequency (Sundberg, 1987). According to Seashore 

(1938/1967), its rate and extent are fairly constant and regular. Bunch states that a good 



 

8 

singer will have an average vibrato of five to eight regular pulsations per second, 

referring studies by Seashore and other researchers. Seashore affirms the average extent 

of the pitch pulsation for good singers is a semitone, although there can be a variation of 

individual vibrato cycles of 0.1 to 1.5 of a tone from the singer’s characteristic average. 

Benade’s study (as cited in Stark, 1999) claims that vibrato may aid in the inteligibility 

of the vowels by sweeping the vowel formants, and may also give the voice greater 

audibility, due to the independence of vibrato from rhythmic patterns of the music. 

 

An important vocal ornament that may be related to the vibrato is the trill. Stark (1999) 

defines it as “a rapid alternation between two adjacent notes, in which the voice 

oscillates between separate pitches, perhaps using the same impulse that drives the 

vibrato”.  

 

 
2.3 Singing Styles 
 

Different styles of singing apparently involve different manners of using the voice 

(Thalén & Sundberg, 2001). In this work we concentrate on four musical genres that are 

associated with different approaches to singing: pop, vocal jazz, flamenco and opera. 

 

a) Pop 
 

Originated in Britain in the mid-1950s, the term “pop music” described the new youth 

music influenced by rock-and-roll (Middleton et al., 2011). 

Middleton (2000) summarized the generally agreed core tendencies of pop singing: 

short phrases often much repeated, falling or circling in shape, usually pentatonic or 

modal; call-and-response relationships between performers; off-beat accent, 

syncopation and rhythmically flexible phrasing; a huge variety of register and of timbre. 

 

b) Vocal Jazz 
 

Jazz is a style characterised by syncopation, melodic and harmonic elements derived 

from the blues, cyclical formal structures and a supple rhythmic approach to phrasing 
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known as swing (Tucker & Jackson, 2011). Most of 20th century’s great vocalists 

performed in the jazz idiom, establishing the style known today as vocal jazz. 

Louis Armstrong’s contribution to the evolution of jazz singing was essential. He was 

able to fashion a singing that was very close to his speech, using a similar technique to 

some of the early blues singers, but his singing removed any residual ‘classical’ 

tendencies from popular singing, making it ultimately susceptible to swing in the same 

way as instrumental music. The sustained and cultured tone of a conventional singer is 

less likely to facilitate swing than a speech-like shaping of syllables, words and phrases. 

He showed that being a horn player or a singer were not so very different from each 

other, and that the basic requirements of singing were to do with feel and personality 

(Potter, 2000). 

 

c) Flamenco 
 

Flamenco is the generic term applied to a particular body of cante (song), baile (dance) 

or toque (solo guitar music), mostly emanating from Andalusia in southern Spain (Katz, 

2011). 

Merchán (2008) makes some conclusions about the behaviour of flamenco melodies: 

short intervals (2nd, 3rd) are very common and most of the movements are adjacent 

degrees; short pitch range (up to a 6th); high degree of ornamentation (melisma) for 

improvisation. 

Vibrato in flamenco differs from other styles, as it is hardly distinguishable from a 

melismatic ornament and it is unstable. 

The dynamics in flamenco are very irregular. A phrase may begin with very soft 

utterances and end with an intense flow of voice, changing suddenly in between. 

 

d) Opera 
 

The word opera can be generically defined as a drama in which the actors sing some or 

all of their parts (Brown, 2011). 

Opera singing exhibits great variability in several aspects, such as pitch range, 

dynamics, or melodic contour length. Vibrato is regular and tuning is good, as it is a 

genre commonly performed by trained professional singers. 
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2.4 Automatic Melody Description 
 

Most listeners are able to recognise and sing or hum the melody in a polyphonic piece 

of music. However, performing this task automatically using computers is still regarded 

by researchers as an unsolved problem. While the pitch of a single note is consistently 

represented as a waveform with a more or less stable periodicity, polyphonic music will 

often have overlapping notes with different fundamental frequencies and their 

respective series of harmonics, that can actually coincide, which appears to be at the 

core of musical harmony (Poliner et al., 2007). Figure 3 shows the basic processing 

structure of typical melody transcription systems. 

 

 
Figure 3: Basic processing structure underlying all melody transcription systems (Poliner et al., 2007) 

 

All approaches to melody transcription face two problems: identifying a set of candidate 

pitches that appear to be present at a given time, then deciding which (if any) of the 

pitches belongs to the melody. In 2007, Poliner et al. reviewed some melody 

transcription systems that participated in previous MIREX contests, concluding there 

was a common processing sequence to most of these systems (Figure 3), resumed in 

Salamon (2008): 

⇒ Multi-pitch extraction: from an audio input, a set of fundamental frequency 

candidates for each time frame is obtained. 

⇒ Melody identification: selecting the trajectory of F0 candidates over time which 

forms the melody. 

⇒ Post processing: remove spurious notes or otherwise increase the smoothness of 

the extracted melody contour. 

 

A current trend in melody extraction systems (and in other music information retrieval 

disciplines) is the adoption of source separation methods to help in this process. 

Harmonic/Percussive Sound Separation (HPSS) was used by Tachibana et al. (2010) 
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and Hsu and Jang (2010) in the MIREX 2010 evaluation campaign, while Durrieu, 

Richard and David (2008) proposed Non-Negative Matrix Factorization techniques. 

 

Despite the source separation trend, salience based methods are still amongst the best 

performing systems. In this work, we used the salience based method designed by 

Salamon and Gómez (2010), which achieves results equal to current state-of-the-art 

systems and was one of the participants in the MIREX contest of 2010. 

 

 
2.5 Genre Classification 
 

Music genre classification is a categorization problem that is object of study by different 

disciplines, such as musicology, music industry, psychology or music information 

retrieval (Guaus, 2009). Automatic music genre classification is the task of assigning a 

piece of music its corresponding genre. 

 

One of the most relevant studies on automatic musical genre classification was put 

together by Tzanetakis and Cook (2002). In this paper, the researchers propose the 

extraction of timbral texture features, rhythmic content features and pitch related 

features. For classification and evaluation, the authors use Gaussian mixture model 

(GMM) classifiers and K-nearest neighbour (K-NN) classifiers. The dataset is 

composed of 20 musical genres and three speech genres with 100 samples of 30 seconds 

per genre. The 20 musical genres are then divided into three smaller datasets (genres, 

classical and jazz). Many experiments and results are discussed and the accuracy of the 

system reaches 61% of correct classifications in the bigger genres dataset, 88% in the 

classical one and 68% in the jazz one. 

 

Since then, different sets of descriptors and classification techniques have been used to 

improve the accuracy of the classification. As in the recent years’ submissions to 

MIREX melody extraction contest, audio source separation techniques have also been 

used in music genre classification systems (Rump et al., 2010), although timbral 

features and their derivatives continue to be the most used (Ellis, 2007; Langlois & 

Marques, 2009; Genussov & Cohen, 2010; Bergstra, Mandel & Eck, 2010). 
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Panagakis, Kotropoulos, and Arce (2009) proposed a robust music genre classification 

framework combining the properties of auditory cortical representations of music 

recordings and the power of sparse representation-based classifiers. This method 

achieved the best accuracies ever on two of the most important genre datasets: GTZAN 

(92%) and ISMIR2004 (94%). 

 

Music genre classification can be considered as one of the traditional challenges in the 

music information retrieval field, and MIREX has become a reference point for the 

authors, providing a benchmark to compare algorithms and descriptors with exactly the 

same testing conditions (Guaus, 2009). 
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3. Methodology 
 

Our framework followed the basic process of building a Music Information Retrieval 

classifier: dataset collection, feature extraction, machine learning algorithm, evaluation 

of the trained system (Guaus, 2009). Figure 4 shows a block diagram for a basic system. 

 

 
Figure 4: Block diagram for a basic automatic classification system (Guaus, 2009) 

 

 
3.1 Dataset Collection 
 

For the purpose of this thesis, we wanted to focus on genres that have a clear melodic 

line and distinct characteristics. Thus, we decided to compile a new dataset. First, we 

had to decide on the musical genres to include. We tried to choose very different genres 

that cover a broad scope, in which the vocals carry the melody. After some discussion, 

the chosen genres were pop, vocal jazz, flamenco and opera. We decided to have an 

instrumental music genre in order to see if there is much difference between the 

extracted melodies from a physical instrument and the singing voice. Instrumental jazz 

can be a good source of comparison due to the fact that some of its performers were also 

singers, such as Chet Baker or Louis Armstrong. Fifty excerpts with the duration of 

approximately 30 seconds were gathered for each genre. In order to minimize possible 

errors of the predominant melody extractor, voice is predominant in the chosen 

excerpts. We now describe the excerpts selected for each genre. A summary of the 

dataset is presented in the end of this section. 
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a) Pop 
 

As the boundaries between pop and other genres such as rock are very thin, we tried to 

focus on songs and artists that most people would consider to be "pop". For this 

database, excerpts ranging in time from the 1980s to the current year were obtained. 

From these, 26 are sung by females and 24 by males. 

 

b) Flamenco 
 

Flamenco was chosen not only because it is widely studied in Spain, but also for its 

vocal technique, which is very particular, and the type of songs that vary a lot, based on 

the different palos (Fernandez, 2004). In this genre, the equilibrium between female and 

male excerpts was more difficult to obtain. In the end, 34 male and 16 female sung 

snippets were chosen. 

 

c) Opera 
 

"Classical" or "erudite" music is represented in this dataset by its most notable form 

involving singing: the opera. All periods of opera are represented here, from baroque 

arias to modern ones. 28 excerpts are sung by females, while 22 are sung by males. 

 

d) Vocal Jazz 
 

For this genre, we gathered excerpts ranging in time from the 1950s to the 21st century. 

Its singing style has a lot in common with pop, which makes it a hard task to distinguish 

between both singing styles, even for humans (Thalén & Sundberg, 2001). For that 

reason, artists such as Frank Sinatra or Nat King Cole are not present in the database. 

From the fifty excerpts gathered, 36 are sung by females and 14 by males. 

 

e) Instrumental Jazz 
 

As this is a huge genre and this thesis is mainly concerned with vocal melodies, we 

focused on getting excerpts which have clear mid-tempo melodies, some of them very 

similar to the ones in the vocal jazz excerpts. Saxophonists or trumpeters, with the 

exception of one trombonist and one flutist, play most of the melodies in the excerpts. 
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Genre No. Excerpts Duration Male Female 

Pop 50 30s 24 26 

Flamenco 50 30s 34 16 

Opera 50 30s 22 28 

Vocal Jazz 50 30s 14 36 

Instrumental Jazz 50 30s 50 0 
Table 2: Summary of the initial dataset 

 

 
3.2 Melody Estimation 
 

After building the database, we used Salamon and Gómez’s method (2011) to extract 

the melodies from the polyphonic excerpts. In the first block of the system the audio 

signal is analysed and spectral peaks (sinusoids) are extracted, which will be used to 

construct the salience function in the next block. This process is comprised of three 

main steps: pre-filtering, transform and frequency/amplitude correction. A time-domain 

equal loudness filter is applied in the pre-filtering stage to attenuate spectral 

components belonging primarily to non-melody sources. Next, a spectral transform is 

applied and the peaks of the magnitude spectrum are selected for further processing. In 

the third step the frequency and amplitude of the selected peaks are re-estimated by 

calculating the peaks’ instantaneous frequency using the phase vocoder method.  

 

The spectral peaks are then used to compute a representation of pitch salience over time, 

a salience function. This salience function is based on harmonic summation with 

magnitude weighting. In the next block, the peaks of the salience function are grouped 

over time using heuristics based on auditory streaming cues. This results in a set of 

pitch contours, out of which the contours belonging to the melody need to be selected. 

The contours are automatically analysed and a set of contour characteristics is 

computed. 

 

In the final block of the system, these characteristics are used to filter out non-melody 

contours. Contours whose features suggest that there is no melody present (voicing 

detection) are removed first. The remaining contours are used to iteratively calculate an 
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overall melody pitch trajectory, which is used to minimise octave errors and remove 

pitch outliers. Finally, contour salience features are used to select the melody F0 at each 

frame from the remaining contours. 

In Figure 5, we can perform a visual inspection on how melodic contours from different 

genres can look very diverse.  
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3.3 Feature Extraction 
 

For extracting relevant features from the estimated melodies, we used a series of 

descriptors. These were derived from the results of Salamon's algorithm, which outputs 

features for each contour of each audio file. The most relevant features extracted are: 

• Length; 

• Pitch height for each frame; 

• Mean pitch height and standard deviation; 

• Vibrato presence, extent, rate and coverage (proportion of pitch contour where 

vibrato is present). 

Global descriptors concerning each file, which we will cover in more detail, were 

computed from these values. 

A list of all 92 descriptors is provided in the end of this section. 

 
3.3.1 Pitch Descriptors 
 

a) Pitch Range 
 

For each contour, we retained the pitch values of the first and last frames, as well as the 

highest and lowest pitch values. From the absolute difference between the former two 

values, we computed the pitch range for each contour. Then, for each file, we calculated 

its mean, standard deviation, skewness and kurtosis values. A global pitch range was 

also estimated from the highest and lowest pitch values in each file. 

 

b) Highest and Lowest Pitch Values 
 

The highest and lowest pitch values for each contour were used as descriptors, as well 

as their mean, standard deviation, skewness and kurtosis values. The highest and lowest 

values in pitch for each file were also used as descriptors. 

 

c) Pitch Height and Interval 
 

From the mean pitch height of each contour, we computed the mean, standard deviation, 

skewness and kurtosis of these values for each file. A different descriptor derived from 
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these values is what we call “interval”, which we considered to be the absolute 

difference between the mean pitch height of one contour and the previous one. Its mean, 

standard deviation, skewness and kurtosis were also computed. 

 

 
3.3.2 Vibrato Descriptors 
 

a) Ratio of Vibrato to Non-Vibrato Contours 
 

This descriptor is computed by counting the number of contours in which vibrato is 

detected and dividing it by the total number of contours for each file. 

 

b) Vibrato Rate, Extent and Coverage 
 

Vibrato is detected in a contour when there is a low-frequency variation in pitch 

between five and eight cycles per second. This value is the vibrato rate output by the 

algorithm for each contour. The extent in cents (100 cents is a semitone) is also 

computed, as well as the coverage, which is the percentage of each contour in which 

vibrato is detected. For all these features, we calculated the mean, standard deviation, 

skewness and kurtosis as descriptors. 

 

 
3.3.3 Shape Class Descriptors 
 

Charles Adams (1976) proposed a new approach to study melodic contours, defining 

them as "the product of distinctive relationships among the minimal boundaries of a 

melodic segment". "Minimal boundaries are those pitches which are considered 

necessary and sufficient to delineate a melodic segment, with respect to its temporal 

aspect (beginning-end) and its tonal aspect (tonal range)". 

 

Following his approach, we computed the initial pitch (I), the final pitch (F), the highest 

pitch (H) and the lowest pitch (L) for each contour. Adams also referred three primary 

features as essential to define the possible melodic contour types: the slope of the 

contour (S), which accounts for the relationship between I and F; the deviation (change 

of direction) of the slope of the contour (D), indicated by any H or L which is different 
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than I or F; the reciprocal of deviation in the slope of the contour (R), which expresses 

the relationship between the first deviation and I, whenever there is more than one 

deviation. 

 

 
Figure 6: Graphic representation of the fifteen melodic contour types (Adams, 1976) 
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“Thus, the product of distinctive relationships (features) among the minimal boundaries 

of a melodic segment defines fifteen melodic contour types” (see Figure 6). Each 

contour was assigned one of these types. 

 

The contour pitch is described with a resolution of 10 cents. This resolution is too high 

to compute the shape class directly as an almost straight contour which should belong to 

class S2D0 could be wrongly classifier as S2D1R1 due to very subtle pitch variation. 

Similarly, if we quantise the contours to a resolution that is too low we risk losing the 

shape class altogether. In the end a resolution of one quarter-tone (50 cents) was found 

to be adequate. 

 

The distributions of shape classes were then computed and used as descriptors. 

 

 
3.3.4 Length-based Descriptors 
 

a) Length 
 

After estimating the duration of each contour, we computed the mean, standard 

deviation, skewness, kurtosis and the maximum for each file. 

 

b) Length-based Descriptors 
 

Although length itself proved not to be a very useful descriptor, it was helpful to build a 

series of other descriptors. These are features computed taking into consideration only 

the longest contours in each file. Apparently, pitch and vibrato related features vary 

depending on the length of the contours. This may also help to eliminate some noise in 

the melody estimation. 
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PitchRange SC13 

MeanPitchRange SC14 

StdDevPitchRange SC15 

SkewnessPitchRange HighestMax 

KurtosisPitchRange LowestMin 

MeanLength HighestMaxBigLength 

StdDevLength MeanInterval 

SkewnessLength StdDevInterval 

KurtosisLength SkewnessInterval 

MaxLength KurtosisInterval 

NumberBigLength MeanHighest 

MeanPitchHeight StdDevHighest 

StdDevPitchHeight SkewnessHighest 

SkewnessPitchHeight KurtosisHighest 

KurtosisPitchHeight MeanLowest 

MeanPitchStdDeviation StdDevLowest 

StdDevPitchStdDeviation SkewnessLowest 

SkewnessPitchStdDeviation KurtosisLowest 

KurtosisPitchStdDeviation MeanHighestBigLength 

RatioVibrato StdDevHighestBigLength 

RatioNonVibrato SkewnessHighestBigLength 

MeanVibratoRate KurtosisHighestBigLength 

StdDevVibratoRate MeanLowestBigLength 

SkewnessVibratoRate StdDevLowestBigLength 

KurtosisVibratoRate SkewnessLowestBigLength 

MeanVibratoExtent KurtosisLowestBigLength 

StdDevVibratoExtent MeanPitchRangeBigLength 

SkewnessVibratoExtent StdDevPitchRangeBigLength 

KurtosisVibratoExtent SkewnessPitchRangeBigLength 

MeanVibratoCoverage KurtosisPitchRangeBigLength 
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StdDevVibratoCoverage MeanBigLength 

SkewnessVibratoCoverage StdDevBigLength 

KurtosisVibratoCoverage SkewnessBigLength 

ShapeClass KurtosisBigLength 

SC1 MeanVibratoRateBigLength 

SC2 StdDevVibratoRateBigLength 

SC3 SkewnessVibratoRateBigLength 

SC4 KurtosisVibratoRateBigLength 

SC5 MeanVibratoExtentBigLength 

SC6 StdDevVibratoExtentBigLength 

SC7 SkewnessVibratoExtentBigLength 

SC8 KurtosisVibratoExtentBigLength 

SC9 MeanVibratoCoverageBigLength 

SC10 StdDevVibratoCoverageBigLength 

SC11 SkewnessVibratoCoverageBigLength 

SC12 KurtosisVibratoCoverageBigLength 

Table 3: List of 92 melody descriptors 
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3.4 Genre Classification 
 

To perform the classification we used the data mining software Weka (Hall et al., 2009). 

This software allows the user to choose several filters, very useful for us to understand 

which are the most important features for a successful classification. It also permits the 

user to apply different types of classifiers and compare the results between them. 

 

 
3.4.1 Attribute Selection Methods 
 

After feeding Weka all the computed descriptors, we applied two automatic attribute 

selection methods. The first, CfsSubsetEval + BestFirst (Hall, 1999), selects the most 

relevant features from the whole bag of descriptors. The second, SVMAttributeEval + 

Ranker (Guyon et al., 2002), is computationally more expensive but allows the user to 

choose the number of descriptors he wants to keep. 

 

 
3.5 Evaluation 
 

 
3.5.1 Evaluation Methodology 
 

To evaluate this work, we decided to implement a baseline approach with which we 

could compare. A typical approach is to extract Mel Frequency Cepstral Coefficients 

(MFCC) features and perform the genre classification (Scaringella, Zoia, & Mlynek, 

2006). We extracted the first 20 coefficients using the Rastamat Matlab toolbox (Ellis, 

2005). The samples were chopped into frames of about 23 ms with 50% overlap and we 

used 40 Mel frequency bands, up to 16 kHz (following Pampalk, Flexer, & Widmer, 

2005). Then, we computed the means and variances for each coefficient, ending with a 

total amount of 40 descriptors. 

 

We also tried to bind both melodic and MFCC features into the same vector and 

examine the results to see if it is advantageous to apply this early fusion technique. 
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3.5.2 Datasets 
 

After initial results were obtained using the 250 excerpt dataset, we expanded it further 

to include 500 excerpts, 100 per genre. The extended dataset has 100 excerpts of each of 

the five musical genres, increasing the total number of snippets to 500. The same rules 

were applied to the collection of the new samples. 

 

We also decided to test the system on an unprepared dataset. The chosen one was the 

GTZAN Genre Collection (Tzanetakis & Cook, 2002), which consists of 1000 audio 

tracks each 30 seconds long. It contains 10 genres, each represented by 100 tracks. The 

genres are: blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae and rock. 
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27 

 

4. Results 
 

In this chapter we present a comparison of quantitative results between our system and 

the baseline approach. Results for the initial and the extended datasets are shown, using 

three approaches, two attribute selection methods and five classifiers. 

 

 
4.1 Initial Dataset 
 

 
4.1.1 Attribute Selection: CfsSubsetEval + BestFirst 
 

Chart 1 shows the results for the initial dataset of 250 excerpts, using three approaches: 

melodic features (our approach), MFCC features (baseline approach) and a fusion of 

both. For all of them, the same attribute selection filter was applied. This filter uses the 

BestFirst search method and CfsSubsetEval evaluator algorithm from Weka. A 10-fold 

cross-validation scheme was used for evaluating the performance of all classifiers. One 

can find between brackets the number of features selected by the filter. 

 

In the case of melodic features, the following 14 are the ones that were selected by the 

filter: 

 

Mean Pitch Range 

Std Dev Length 

Std Dev Vibrato Coverage 

Shape Class 1 

Shape Class 3 

Shape Class 4 

Highest Maximum Big Length 

Std Dev Interval 

Mean Highest 

Mean Vibrato Rate Big Length 

Skewness Vibrato Rate Big Length 

Mean Vibrato Extent Big Length 

Mean Vibrato Coverage Big Length 

Std Dev Vibrato Coverage Big Length 
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Observing these descriptors, we can notice the relevance of vibrato descriptors, 

especially the ones that are length-based as well. This reassures our belief that the 

presence and the type of vibrato is one of the most important characteristics that leads 

us to distinguish between singing styles. 

We now turn to examine the classification results in Chart 1. 

 

 
Chart 1: Results for the initial dataset using CfsSubsetEval+BestFirst as the attribute selection method 

 

Looking at these results, we can observe our system achieves a performance of over 

90% for almost all classifiers, while the baseline approach performs slightly worse in 

all classifiers except SMO. It is also recognizable a slight improvement in the results 

when we combine both types of features into a single vector, reaching 95% in the best 

case. 

 

Regarding the confusion matrices in Figure 7 we can again take some interesting 

considerations. It was mentioned before (section 3.1) that vocal jazz and pop singing 

styles have much in common and can be easily mistaken one for the other even by 

humans. We can confirm that for most of the classifiers using the melodic features 

this confusion is present - see for example the first melodic confusion matrix, in 

which 11 vocal jazz excerpts are classified as pop, while 10 pop excerpts are labeled 

as vocal jazz. When we fuse the melodic and MFCC features, this error is reduced and 

the overall classification accuracy improves. 
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Figure 7: Examples of confusion matrices. Left: melodic; center: MFCC; right: fusion. Machine learning 
algorithms from top to bottom: SMO, J48, RandomForest, LogitBoost, BayesNet. Music genres indicated by 
the letters: a) flamenco; b) instrumental jazz; c) opera; d) pop; e) vocal jazz 

 

It is also intriguing to notice that a simple algorithm such as a decision tree conveys 

valuable results from a small 14-dimension vector, in the case of melodic features 

alone. Figure 8 demonstrates the relevance of these features, from which a small tree 

that delivers remarkable results can be obtained. Figure 9 reveals that employing the 

correct machine learning algorithm (K-Nearest Neighbours KStar) it is possible to 

obtain relevant results (91%) with only two descriptors: Mean Vibrato Rate Big 

Length and Mean Vibrato Coverage Big Length. 
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Figure 8: Example of a J48 decision tree that delivers 92.4% accuracy 

 

 
Figure 9: Mean Vibrato Rate Big Length vs Mean Vibrato Coverage Big Length 

 

The first expected conclusion we can take is that vibrato coverage helps us to classify 

opera. In almost all of the opera excerpts, the biggest exctracted melodic contours 

(which should correspond to the bigger phrases) show a mean vibrato coverage above 

30%. We can also observe that the mean vibrato rate in vocal jazz and pop is usually 

greater than in instrumental jazz and flamenco, making it a useful feature to isolate 

these two styles. On the other hand, to distinguish between them, one useful feature is 

the mean pitch range, meaning that the distance between the lowest and highest pitch 
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in vocal jazz melodies is generally larger than in pop melodies. Shape class 

descriptors prove to be useful in this tree, as instrumental jazz can be discriminated 

using the fourth of these descriptors (for more information, see section 3.3.3). 

 

 
4.1.2 Attribute Selection: SVMAttributeEval + Ranker 
 

The results exhibited in Chart 2 were obtained using the same approaches and 

classifiers as the ones explained before for Chart 1. The only difference relies on the 

attribute selection, which in this case uses Ranker as the search method and 

SVMAttributeEval as the evaluator. Ranker allows the user to define a maximum 

number of attributes to be kept. We chose a set of ten descriptors to have significantly 

less features than instances, avoiding overfitting. It also makes it possible to compare 

if the results vary significantly when we use different attribute selection methods and 

less descriptors. The list of features is shown in Table 4. 

 

Table 4: List of selected features by order of relevance 

 

Rank Melodic MFCC Fusion 

1 Skewness Vibrato 
Rate Big Length 

Mean MFCC5 Skewness Vibrato 
Rate Big Length 

2 Mean Pitch Range Variance MFCC5 Mean Pitch Range 

3 Mean Vibrato 
Coverage Big Length 

Mean MFCC1 Mean Vibrato 
Coverage Big Length 

4 Mean Lowest Big 
Length 

Mean MFCC3 Mean MFCC1 

5 Kurtosis Vibrato 
Coverage 

Mean MFCC15 Mean Lowest Big 
Length 

6 Mean Pitch Std 
Deviation 

Variance MFCC3 Kurtosis Vibrato 
Coverage 

7 Mean Vibrato Extent Mean MFCC10 Variance MFCC5 

8 Std Dev Pitch Range Mean MFCC4 Std Dev Pitch Range 

9 Std Dev Vibrato 
Coverage Big Length 

Variance MFCC6 Std Dev Vibrato 
Coverage Big Length 

10 Shape Class 3 Mean MFCC6 Variance MFCC20 
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Chart 2: Results for the initial dataset using SVMAttributeEval+Ranker as the attribute selection method 

 

We can detect immediately a significant decrease in the accuracy of our approach for 

all classifiers except SMO, which maintains the same level of accuracy. This may 

mean that this classifier is more resilient to changes in the number of descriptors or 

that the attribute selector favours Support Vector Machines classifiers. The accuracy 

also drops for the baseline approach and for the fusion of both approaches, although 

by a smaller margin, keeping the level above 90% for all classifiers except J48 tree. 

 

 
4.2 Extended Dataset 
 

 
4.2.1 Attribute Selection: CfsSubsetEval + BestFirst 
 

The same approaches, classifiers and attribute selection method as the ones explained 

for Chart 1 were used for Chart 3. However, the dataset is an expanded version of the 

first, adding 250 snippets to achieve a total of 500 excerpts. 
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Chart 3: Results for the expanded dataset using CfsSubsetEval+BestFirst as the attribute selection method 

 

Several observations can be made from these results: 

1. For melodic features, accuracy decreases by an average of 4%, nevertheless 

staying close to the 90% mark; 

2. For MFCC features, accuracy increases by an average of 2%, reaching the 

same level as the melodic features approach; 

3. With the exception of J48, there is no significant decrease in accuracy when 

using a single vector containing both types of features. 

The first statement was expected, as accuracy tends to decrease when we increase the 

dataset. The second evidence may be explained as the result of more training, which 

may allow for a proper stabilisation of the MFCC means and variances. Concerning 

the third consideration, maybe the accuracy is kept because the number of selected 

features is high. 

 

 
4.2.2 Attribute Selection: SVMAttributeEval + Ranker 
 

To avoid overfitting, once again we tried this attribute selection method that allows to 

sort the features by order of relevance and select a small portion of them, in this case 

ten (Table 5). 
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Rank Melodic MFCC Fusion 

1 Kurtosis Vibrato Rate 
Big Length 

Mean MFCC5 Kurtosis Vibrato Rate 
Big Length 

2 Mean Pitch Range Variance MFCC5 Mean Pitch Range 

3 Mean Vibrato 
Coverage Big Length 

Mean MFCC1 Mean Vibrato 
Coverage Big Length 

4 Skewness Vibrato 
Rate Big Length 

Variance MFCC4 Mean MFCC1 

5 Mean Lowest Big 
Length 

Variance MFCC7 Mean Lowest Big 
Length 

6 Std Dev Vibrato Rate 
Big Length 

Mean MFCC7 Mean MFCC5 

7 Mean Pitch Std 
Deviation 

Mean MFCC10 Mean Pitch Std 
Deviation 

8 Mean Vibrato Extent 
Big Length 

Mean MFCC4 Mean MFCC10 

9 Std Dev Pitch Range Mean MFCC11 Mean MFCC2 

10 Kurtosis Vibrato 
Coverage 

Variance MFCC20 Variance MFCC5 

Table 5: List of selected features by order of relevance 

 

 
Chart 4: Results for the expanded dataset using SVMAttributeEval+Ranker as the attribute selection method 
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Comparing the results shown in Chart 4 with the ones exhibited in Chart 3, we can see 

that, especially for the fusion vector, using less features to perform the classification 

does not lead to a substantial decline in the accuracy of the system. 

Comparing to Chart 2, we can take the same conclusions as we took in the previous 

section (4.2.1). 

 
4.3 GTZAN Genre Collection 
 

As this is not a prepared dataset, we were expecting the system’s accuracy to drop 

considerably. In this collection, a great part of the samples have low quality and no 

clear melody, which leads to a poor melody extraction, hence weak classification. 

Chart 5 displays the results for the three approaches and five classifiers that were 

adopted before, using CfsSubsetEval + BestFirst as the attribute selection method. 
 

 
Chart 5: Results for the GTZAN dataset using CfsSubsetEval + BestFirst as the attribute selection method 

 

As expected, accuracy is lower for all classifiers with both our and the baseline 

approaches. However, SMO, Random Forest and Bayesian Networks attain more than 

75% precision when fusing both kinds of features, lower than state-of-the-art 

performance of 92% achieved by Panagakis, Kotropoulos, and Arce (2009). 

Nevertheless, it is interesting to note that by fusion we can significantly improve the 

results. This suggests that complementing low level features with high level melody 

features leads to promising results. 
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5. Conclusions 
 

A final overview of the work carried out is provided in the last chapter of this thesis. 

First we present the goals achieved and contributions made and then make 

suggestions for future work. 

 

 
5.1 Contributions 
 

Looking at the goals we established in the introduction (chapter 1.2), we note that all 

of them have been met: 

• A state-of-the-art review in the most relevant fields for this thesis was 

provided; 

• A genre classifier using melody features was built; 

• A set of reliable melody descriptors was achieved; 

• A ground truth dataset for system evaluation was generated; 

• Our method was evaluated employing different datasets and it was compared 

to other approaches; 

• Low level and mid/high level descriptors were successfully fused, improving 

indeed the accuracy of the system; 

• The evaluation results were presented and discussed. 

Concentrating on the evaluation results, we can draw some final conclusions. The set 

of melody descriptors has proven to be robust, as the accuracy of the system did not 

fall substantially when doubling the dataset. We can also state that complementing 

low level timbre features with high level melody features is a promising direction for 

genre classification. Another conclusion we can take is that it is possible to achieve 

about 90% precision in genre classification with a melody description system that 

reaches about 70% accuracy, which is state-of-the-art level. 
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5.2 Future Work 
 

The work developed throughout this thesis has given several interesting and 

promising results. Many of them can be extended and improved in several ways. We 

propose here some suggestions: 

• The dataset should be expanded, through the addition of more excerpts and the 

introduction of other genres; 

• Other low level features should be tested, in order to achieve a stronger set of 

descriptors; 

• Different datasets should be tried, preferably ones which include melody 

annotation; 

• Genre classification performance should be compared to the melody extraction 

accuracy, from which we could draw some interesting conclusions. 

 

 
5.3 Final Words 
 

As a personal conclusion, the main motivation for this project was fulfilled, as I had 

the possibility of combining my musical background with the technologies developed 

in the MTG. Throughout this work I have had the opportunity to learn from many 

people and would like to thank them all. 

 

Bruno Rocha 
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