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ABSTRACT

This extended abstract describes our submission for the scene clas-
sification task of the IEEE AASP Challenge for Detection and Clas-
sification of Acoustic Scenes and Events. We explore the use of
Recurrence Quantification Analysis (RQA) features for this task.
These features are computed over a thresholded similarity matrix
computed from windows of MFCC features. Added to traditional
MFCC statistics, they improve accuracy when using a standard
SVM classifier.

Index Terms— mfcc, support vector machine, sound scene,
machine learning, binaural

1. INTRODUCTION

A very established practice in audio analysis tasks is the integra-
tion of frame-level features over some period of time in order in
a single vector that can be input to state-of-the art algorithms for
classification, clustering, and so on. The typical approach consists
on averaging the frame-level features and using the statistics (mean,
standard deviation), a process that destroys very important informa-
tion about the temporal evolution and distribution of the features.
The development of features that describe the temporal evolution
of the sound is still an open issue. In this submission we explore
the use of Recurrence Quantification Analysis (RQA) [1] for sup-
plying some additional information on temporal dynamics. We face
the general problem of assigning labels to audio files by training a
classifier with features extracted from the audio signal. Because of
their simplicity and ease of implementation, we expect RQA fea-
tures may become a popular choice for many tasks related with au-
dio identification, especially for complex and mixed signals such as
auditory scenes or environmental sounds.

Our system extracts Mel Frequency Cepstral Coefficients
(MFCC) from audio and then computes RQA features over win-
dows of 400ms.
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Figure 1: Recurrence plots of two files belonging to ”open air mar-
ket” and ”tube” classes respectively using the same radius

2. FEATURE EXTRACTION

2.1. MFCC extraction

We extract Mel Frequency Cepstral Coefficients from the audio
recordings. Our implementation uses the rastamat [2] library. We
observed important differences when testing different MFCC im-
plementations and parameters. We use the default settings for win-
dows of 25ms and hops of 10ms, but limiting the frequency range
to 0-900Hz.
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2.2. RQA Features

Recurrence Quantification Analysis (RQA)[1] is a set of techniques
developed during the last decade in the study of chaos and com-
plex systems. The basic idea is to quantify patterns that emerge
in recurrence plots. RQA has since been applied in a wide variety
of disciplines. The original technique starts from one-dimensional
time series which are assumed to result from a process involving
several variables. By delaying the time series and embedding it in a
phase space, this multidimensionality can be recovered according to
Taken’s theorem. The distance matrix of the series is then computed
and then thresholded to a certain radius r. The radius represents the
maximum distance of two observations of the series that will still be
considered as belonging to the same state of the system. In the case
of audio analysis, it is common to work with multivariate time series
such as MFCC features. Hence, we adapt the technique by comput-
ing and thresholding the similarity matrix obtained from the MFCC
representation using cosine distance. Thus, we will generally use
”frames” to refer to each of the observations in the parametrized au-
dio time series. The resulting matrix contains ones for each pair of
frame indices that are close together, and zeros for the rest. Figure
1 shows two of such plots. The main intuition is that diagonal lines
represent periodicities in the signal, i.e. repeated (or quasi-repeated,
depending on the chosen radius) sequences of frames, while verti-
cal lines represent stationarities, i.e. the system remains in the same
state. The main diagonal, or Line Of Identity (LOI) is obviously not
counted. From this idea, several metrics have been developed that
quantify the amount and length of lines of contiguous points in the
matrix.

Most features were developed by Ziblut and Webber [3]. A
good summary can be found here [1]. We summarize the most com-
monly used.

• Recurrence (REC) is just the percentage of points in the
thresholded plot. This obviously depends on the radius, but for
fixed radius, sounds with high self-similarity will have higher
values.

• Determinism (DET ) is measured as the percentage of points
that are in diagonal lines. Thus, this feature should be useful to
identify sounds with periodicities.

• Ratio (RATIO) is the ratio between DET and RR. We also
use the ratio between LAM and RR.

• Laminarity (LAM ) is the percentage of points that form ver-
tical lines. It could be useful to identify sounds that have sta-
tionary segments.

• The average diagonal length (LEN ) and longest diagonal size
(Lmax) further characterize repetitions, and are related to their
periods. The inverse of Lmax is often used and characterized
as Divergence (DIV ).

• Correspondingly, the Trapping Time (TT ) is the average verti-
cal line length, and along with the maximum length (V max),
characterizers durations of stationary periods.

• Entropy (ENTR) is the Shannon entropy of the diagonal line
lengths. We also compute the entropy for vertical line lengths.

In order to analyze long series, a windowed version is often
used, which consists in computing the recurrence plots from over-
lapping windows of fix size. This makes it possible to analyze the
temporal evolution of the features, which can be averaged to obtain
a document level representation. In our experiments, this approach
proved to be faster while giving slightly better results. We use tex-

ture windows of 40 MFCC frames, which represents 400ms of au-
dio. With respect to the radius parameter, while it is possible to ad-
just it taking into account the data (e.g to provide a fixed recurrence
rate), we found using a fix value tended to give better classifica-
tion accuracy. We use a value of 0.03 (determined experimentally)
for the cosine similarity between MFCC frames. Other parameters
are the minimum line lengths for considering diagonal and vertical
lines. These can be typically set to the minimum 2 points.

3. SCENE CLASSIFICATION

For the Scene classification task, our system follows a standard
SVM-based approach using an RBF kernel. For each training ex-
ample we extract mean and variance of 13 MFCC coefficients ex-
tracted from the audio waveform. This gives 25 features (removing
the 0th coefficient). We add 11 RQA features described above, av-
eraged along windows of 40 MFCC frames, for a total 36 dimen-
sions. This improves our classification accuracy from about 66%
when using MFCC statistics to about 71% when adding RQA fea-
tures. RQA features themselves can classify the scenes with 55%
accuracy (numbers are preliminary). Two versions of the same sys-
tem were submitted to the challenge. One uses hardcoded γ and
C parameters for the SVM classifier, while the second chooses this
parameters via grid search.

4. CONCLUSIONS

Our preliminay experiments suggest that RQA features have some
discriminating power with respect to auditory scenes, that is not
captured in basic MFCC statistics. Unlike most approsaches, RQA
features make no assumptions about linearity or stationarity of the
data. We plan to complement this approach by adding more descrip-
tors of the recurrence plot and/or the texture window from which it
is derived. A system using small windows could be suitable also for
event detection.

5. REFERENCES

[1] J. Zbilut and C. J. Webber, “Recurrence quantification anal-
ysis,” in Wiley Encyclopedia of Biomedical Engineering,
M.Akay, Ed. Hoboken: John Wiley and Sons, 2006.

[2] D. P. W. Ellis, “PLP and RASTA (and MFCC, and inversion) in
Matlab,” 2005, online web resource. [Online]. Available: http:
//www.ee.columbia.edu/∼dpwe/resources/matlab/rastamat/

[3] C. L. Webber and J. P. Zbilut, “Dynamical assessment of phys-
iological systems and states using recurrence plot strategies,”
Journal of Applied Physiology, vol. 76, no. 2, pp. 965–973,
1994.


