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ABSTRACT

In this paper we analyze the reliability of the evaluation
of Audio Melody Extraction algorithms. We focus on the
procedures and collections currently used as part of the
annual Music Information Retrieval Evaluation eXchange
(MIREX), which has become the de-facto benchmark for
evaluating and comparing melody extraction algorithms.
We study several factors: the duration of the audio clips,
time offsets in the ground truth annotations, and the size
and musical content of the collection. The results show
that the clips currently used are too short to predict per-
formance on full songs, highlighting the paramount need
to use complete musical pieces. Concerning the ground
truth, we show how a minor error, specifically a time off-
set between the annotation and the audio, can have a dra-
matic effect on the results, emphasizing the importance of
establishing a common protocol for ground truth annota-
tion and system output. We also show that results based on
the small ADC04, MIREX05 and INDIAN08 collections
are unreliable, while the MIREX09 collections are larger
than necessary. This evidences the need for new and larger
collections containing realistic music material, for reliable
and meaningful evaluation of Audio Melody Extraction.

1. INTRODUCTION

The task of melody extraction has received growing at-
tention from the research community in recent years [4–
7, 10–12]. Also referred to as Audio Melody Extraction,
Predominant Melody Extraction, Predominant Melody Es-
timation or Predominant Fundamental Frequency (F0) Es-
timation, the task involves automatically obtaining a se-
quence of frequency values representing the pitch of the
main melodic line from the audio signal of a polyphonic
piece of music. As the number of researchers working on
the task grew, so did the need for proper means of eval-
uating and comparing the performance of different algo-
rithms. In 2004, the first Audio Description Contest (ADC)
was hosted by the Music Technology Group at Universitat
Pompeu Fabra in Barcelona, Spain. This initiative later
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evolved into the Music Information Retrieval Evaluation
eXchange (MIREX) [3], which is held annually in con-
junction with the ISMIR conference.

MIREX has become the de-facto benchmark for eval-
uating and comparing the performance of melody extrac-
tion algorithms, with over 50 algorithms evaluated since
the first run in ADC 2004. Whilst this is without doubt
an indication of the formalization of the topic as an estab-
lished research area, it has recently been argued that some
of the evaluation procedures employed by the Music Infor-
mation Retrieval (MIR) research community still lack the
rigor found in other disciplines such as Text IR [13]. In
this paper we examine the evaluation of melody extraction
algorithms, as currently carried out in the MIREX Audio
Melody Extraction (AME) task. We focus on three as-
pects of the evaluation: first, we examine the annotation
procedure used for generating a ground truth for evalua-
tion. Specifically, we study the influence of a systematic
error in the annotations, in the form of a fixed time off-
set between the ground truth annotation and the output of
the algorithms. This issue is particularly relevant, as such
an error has actually been detected in past MIREX AME
evaluations. Next, we consider the duration of the audio
excerpts (clips) used for evaluation. Currently all collec-
tions used for evaluation are comprised of short excerpts
taken from full songs. The underlying assumption is that
performance on a short clip is a good predictor for per-
formance on a full song. However to date this assump-
tion has neither been confirmed nor confuted. Finally, we
consider the aspect of collection size. Currently, the size
of most collections used for AME evaluation is relatively
small compared to collections used in other IR tasks, and
so we assess whether this presents any problems or not.
Through these factors, we aim to assess the reliability of
the evaluation procedure, as well as the meaningfulness of
the results and the conclusions that are drawn from them.

The remainder of the paper is as follows. In Section 2
we explain the current evaluation procedure for AME al-
gorithms. Section 3 takes a closer look at the annotation
procedure, assessing the potential influence of a system-
atic error in the annotation process. In Section 4 we study
the relationship between system performance and clip du-
ration. In Section 5 we consider the influence of the size of
the music collection used for evaluation. Then, in Section
6 we provide further insight into the results obtained in the
previous sections, and finally we present the conclusions
in Section 7.



2. MELODY EXTRACTION EVALUATION

We start by describing the current procedure for evaluating
melody extraction algorithms, as carried out in the yearly
MIREX AME evaluation.

2.1 Ground Truth Annotation

The ground truth for each audio excerpt is generated using
the following procedure: first, the annotator must acquire
the audio track containing just the melody of the excerpt.
This is done by using multitrack recordings for which the
separate tracks are available. Given the melody track, the
pitch of the melody is estimated using a monophonic pitch
tracker with a graphical user interface such as SMSTools 1

or WaveSurfer 2 , producing an estimate of the fundamental
frequency (F0) of the melody in every frame. This anno-
tation is then manually inspected and corrected in cases of
octave errors (double or half frequency) or when pitch is
detected in frames where the melody is not present (un-
voiced frames). Finally, the estimated frequency sequence
is saved into a file with two columns - the first contain-
ing the time-stamp of every frame, starting from time 0,
and the second the value of the fundamental frequency in
Hertz. In ADC 2004 a hop size of 5.8 ms was used for the
annotation, and since 2005 a hop size of 10 ms between
frames is used. Frames in which there is no melody present
are labelled with 0 Hz.

2.2 Evaluation Measures

An algorithm’s output for a single excerpt is evaluated by
comparing it to the ground truth annotation on a frame-by-
frame basis, and computing five measures which summa-
rize its performance for the complete excerpt. For a full
music collection, these five measures are computed per
excerpt and then averaged over the entire collection. To
facilitate the evaluation, algorithms are required to pro-
vide the output in the same format as the ground truth.
The only difference between the algorithm’s output and
the ground truth annotation is that for frames estimated as
unvoiced (i.e. no melody present) by the algorithm, the al-
gorithm may return either 0 Hz (as in the ground truth) or
a negative frequency value. The negative value represents
the algorithm’s pitch estimation in case its voicing estima-
tion is wrong and the melody is actually present in that
frame. This allows us to separate two different aspects in
the evaluation - the algorithm’s voicing estimation (deter-
mining when the melody is present and when it is not) and
the algorithm’s pitch estimation (determining the F0 of the
melody). The five evaluation measures currently employed
in MIREX, as defined in [11], are summarized in Table 1.

2.3 Music Collections

Over the years, efforts by different researchers/groups have
been made to generate annotated music collections for AME
evaluation. The combination of the limited amount of multi-
track recordings freely available, and the time-consuming

1 http://mtg.upf.edu/technologies/sms
2 http://www.speech.kth.se/wavesurfer/

Voicing Recall Rate: the proportion of frames labeled as voiced in the
ground truth that are estimated as voiced by the algorithm.
Voicing False Alarm Rate: the proportion of unvoiced frames in the
ground truth that are estimated as voiced by the algorithm.
Raw Pitch Accuracy: the proportion of voiced frames in the ground
truth for which the F0 estimated by the algorithm is within± 1

4
tone (50

cents) of the ground truth annotation.
Raw Chroma Accuracy: same as the raw pitch accuracy, except that
both the estimated and ground truth F0 sequences are mapped into a
single octave, in this way ignoring octave errors in the estimation.
Overall Accuracy: combines the performance of the pitch estimation
and voicing detection to give an overall performance score. Defined as
the proportion of frames (out of the entire excerpt) correctly estimated
by the algorithm, i.e. unvoiced frames that are labeled as unvoiced and
voiced frames with a correct pitch estimate.

Table 1. AME evaluation measures used in MIREX.

Collection Description
ADC2004 20 excerpts of roughly 20s in the genres of pop, jazz and

opera. Includes real recordings, synthesized singing and
audio generated from MIDI files. Total play time: 369s.

MIREX05 25 excerpts of 10-40s duration in the genres of rock,
R&B, pop, jazz and solo classical piano. Includes real
recordings and audio generated from MIDI files. Total
play time: 686s.

INDIAN08 Four 1 minute long excerpts from north Indian classical
vocal performances. There are two mixes per excerpt with
differing amounts of accompaniment resulting in a total
of 8 audio clips. Total play time: 501s.

MIREX09 374 Karaoke recordings of Chinese songs (i.e. recorded
singing with karaoke accompaniment). Each recording is
mixed at three different levels of signal-to-accompaniment
ratio {-5dB, 0dB, +5dB} resulting in a total of 1,122 audio
clips. Total play time: 10,022s.

Table 2. Test collections for AME evaluation in MIREX.

annotation process, means most of these collections are
quite small compared to those used in other MIR disci-
plines. In Table 2 we provide a summary of the music col-
lections used in MIREX for AME evaluation since 2009.

3. GROUND TRUTH ANNOTATION OFFSET

In this section we study the influence of a specific type of
systematic error in the annotation on the results. Whilst
there are other aspects of the annotation process that are
also worth consideration, we find this issue to be of partic-
ular interest, since it was actually identified recently in one
of the music collections used for Audio Melody Extraction
evaluation in MIREX.

As explained in the previous section, all AME evalua-
tion measures are based on a frame-by-frame comparison
of the algorithm’s output to the ground truth annotation.
Hence, if there is a time offset between the algorithm’s
output and the ground truth annotation, this will cause a
mismatch in all frames. Since melody pitch tends to be
continuous, a very small time offset may not be noticed.
However, as we increase the offset between the two se-
quences, we expect it to have an increasingly detrimental
effect on the results.

To evaluate the effect of such an offset, we compiled a
collection of 30 music clips from publicly available MIREX
training sets: 10 from ADC 2004, 9 similar to MIREX05
and 11 similar to MIREX09. We used the ground truth
annotations generated by the original authors of each col-
lection, and ensured that the first frame of each annota-



tion was centered on time 0. For evaluation, we use the
output of six different melody extraction algorithms that
were kindly provided by their authors: KD [4], DR 3 [5],
FL [6], HJ [7], RP [9] and SG [12]. For each algorithm,
we computed the mean raw pitch and overall accuracy for
the entire collection, as a function of a fixed time offset in-
troduced in the ground truth annotation, from -50 ms to 50
ms using 1 ms steps. To emulate offsets smaller than the
hop size of the annotation (10 ms), the ground truth was
upsampled using linear interpolation.

3.1 Results

In Figure 1 we display the results of the evaluation, where
we have subtracted from all values the score at offset 0. In
this way, the graph reflects the absolute difference between
the score at a given offset and the optimal score of the algo-
rithm (assuming it is centered on time 0). Plot (a) contains
the results for the raw pitch measure, and plot (b) for the
overall accuracy.
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Figure 1. Absolute performance drop versus annotation
offset: (a) raw pitch accuracy, (b) overall accuracy.

As can be seen, the effect of the offset is quite dramatic,
causing an absolute drop of up to 25% in the raw pitch
accuracy and 20% in the overall accuracy for the most ex-
treme offset evaluated (50 ms). Though a 50 ms offset is
perhaps an exaggerated case, in 2011 it was discovered that
one of the MIREX collections had a 20ms offset. In our
evaluation, a 20 ms offset would cause the most affected
algorithms to loose 17% in raw pitch accuracy, and 13%
in overall accuracy. Another interesting observation is that
some algorithms do not perform best at offset 0 (most visi-
bly RP, whose peak performance is at -6 ms). This empha-
sizes the fact that it does not suffice for the annotation to
be centered on time 0, but rather, that there must be a strict
convention to which both the annotations and algorithms
adhere. Finally, we found there is a correlation between
absolute performance and the effect of annotation offset:
the higher the absolute performance of the algorithm, the
more sensitive it is to an offset in the annotation. This is

3 The output was computed using a different implementation than that
of the paper, available at: https://github.com/wslihgt/separateLeadStereo

particularly important, since it suggests that the best algo-
rithms are those who will be most affected by this type of
systematic error.

4. CLIP DURATION

A common criticism of evaluation in MIR, and particu-
larly in MIREX, is the use of clips instead of full songs.
One might argue that the use of clips is unrealistic and that
observed performance on those clips may be very different
from performance on full songs [13]. The collections used
in the AME evaluation contain some very short excerpts,
some only 10 seconds long. The use of such small clips is
especially striking in AME: these clips contain primarily
voiced frames, and so the generalization of the results to
full songs should be questioned. We designed an experi-
ment to assess the effect of clip duration on the reliability
of the AME evaluations.

For each of the 30 clips used in the previous experiment
(referred to as the x1 clips), we created a series of subclips:
2 subclips of half the duration, 3 subclips of one third of
the duration, and 4 subclips of one forth of the duration
(referred to as the x1/2, x1/3 and x1/4 subclips). Note that
the x1/4 subclips can also be considered as x1/2 versions of
the x1/2 subclips. This gives us 180 x1/2 subclips, 90 x1/3
subclips and 120 x1/4 subclips, all of which were used to
evaluate the six algorithms. We computed the performance
difference between all subclips and their corresponding x1
versions, leading to a grand total of 2340 data-points.

4.1 Results

In Figure 2 we show the log-scaled distribution of relative
performance differences. Mean differences vary between
13% and 21% for overall accuracy and raw pitch, while
for voicing false-alarm the means are around 50%. We
note that there is a large amount of outliers in the distri-
butions. However, these outliers were not found to corre-
spond to particular songs or algorithms (they are rather ran-
domly distributed). There seems to be a clear correlation:
the shorter the subclips, the larger the performance differ-
ences (all significant by a 1-tailed Wilcoxon test, α=0.01).
In principle, therefore, one would want the clips used for
evaluation to be as long as possible; ideally, the full songs.

In Figure 3 we plot the log-scaled relative performance
differences in overall accuracy, this time as a function of
the log-scaled actual subclip duration (other measures pro-
duce very similar plots). We see that the negative correla-
tion between subclip duration and performance difference
appears to be independent of the duration of the x1 clip. We
fitted a non-linear model of the form diff = a · durationb,
where a and b are the parameters to fit, to the results of
each of the relative durations (x1/2, x1/3, x1/4), and as the
plot shows, they are very similar. In fact, an ANCOVA
analysis revealed no significant difference between them.
This suggests that the error decreases as the clip duration
increases, regardless of the duration of the full song.



●●●●●

●

●
●
●●●●

●
●
●
●●

●
●●

●●●●●
●●
●
●
●
●●

●
●

●

●

●
●
●
●●

●●●●
●●

●●
●●
●
●

●

●

●●

●
●●
●●
●●
●
● ●

●
●
●
●

●●

●

●
●

●●

●
●
●
●
●
●

●
●

●●
●
●

●

●

●
●

●●●●

●●

●

●

●

●●
●

●
●●
●
●●
●●●

●

● ●●●

●

●

●
●
●

●

●
●
●

●

●

●●
●
●
●
●
●●

●
●

●●

●
●
●●

●
●

●●
●
●●
●●

●
●
●
●
●

●

●

●●
●

●

●●●

●

●●●●

●

●
●

●

●
●
●

●●

●

●●●

●

●●
●●

●
●
●●
●
●
●●

●
●●

●
●

●

●

●
●●
●●●●

●

●●

●
●

●●

●
●●
●●
●●
●

●
●

●●

●

●

●

●

●
●●
●

●●●

●
●
●
●

●
●●●
●

●

●●●
●●
●●
●
●●
●

●

●
●
●
●

●

●

●

●●●

●
●
●●●

●●

●●
●
●●
●

●

●

●●
●
●●

●
●

●

●
●

●

●

●

●●
●●●
●
●●

●●

●

●
●

●

●●

●

●

●

●
●

●●●●●

●
●
●

●
●
●●
●●
●

●●

●

●●
●
●
●
●

●

●

●

●
●
●
●
●
●

●

●●

●

●

●

●

●

●

●
●
●
●

●●

●
●

●

●
●
●●

●

●

●●
● ●

●

●●
●●

●●

●

●
●

●
●●●

●

●
●●

●

●
●●

●

●●

●●

●
●

●●●●●●

●
●
●●

●●●

●●

●

●

●

●
●

●

●
●
●●

●
●
●
●●●

●●

●

●

●
●
●
●

●

●

●●

●●●
●

●
●●●

●●●

●

●●
●

●●
●

●

●

●

●●

●

●
●
●

●●●

●
●
●●

●

●

●
●
●
●

●
●

●
●

●●

●

●

●

●

●
●
●
●

●
●

●

●●

●

●●

●

●●
●

●
●
●
●●●
●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●
●

●●
●●

●
●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●●●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●●

●

●

●
●

●
●●

●
●
●●
●

●

●

●●●●
●

●

●
●

●

●●●

●

●

●

●
●

●

Overall                   Raw                     Voicing 
Accuracy                 Pitch                False−Alarm

Subclip relative duration

%
 o

f p
er

fo
rm

an
ce

 d
iff

er
en

ce

1
10

10
0

10
00

10
00

1/4 1/3 1/2 1/4 1/3 1/2 1/4 1/3 1/2

Figure 2. Releative performance differences between sub-
clips and their corresponding x1 clips. Blue crosses mark
the means of the distributions.
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5. COLLECTION SIZE

Regardless of the effectiveness measure used, an AME ex-
periment consists of evaluating a set of algorithmsA using
a set of songs S. Such an evaluation experiment can be
viewed as fitting the following model:

yas = y + ya + ys + εas (1)

where yas is the score of algorithm a for song s, y is the
grand average score of all possible algorithms over all pos-
sible songs, ya is the algorithm effect (the average devi-
ation of algorithm a from the grand average y), ys is the
song effect and εas is a residual modeling the particular
deviation of algorithm a for song s. In our case, where we
do not consider other effects such as annotators, this εas
residual actually models the algorithm-song interaction ef-
fect: some algorithms are particularly better (or worse) for
particular songs.

When a researcher carries out an AME evaluation ex-
periment, they evaluate how well an algorithm performs
for the set S of songs, but ideally they want to general-
ize from the performance of that specific experiment to
the average score the algorithm would obtain for the pop-
ulation of all songs represented by the sample S, not just
the sample itself. The reliability when drawing such gen-
eral conclusions based on the observations on samples (test
collections) can be measured with Generalizability Theory
(GT) [1, 2].

From the model in Eq. 1 we can identify two sources of
variability in the observed scores: actual performance dif-
ferences among algorithms and difficulty differences among
songs. Ideally, we want most of the variability in yas to be
due to the algorithm effect, that is, the observed effective-
ness differences to be due to actual differences between al-
gorithms and not due to other sources of variability such as
songs, annotators, or specific algorithm-song interactions.
Note that this does not mean a collection should not con-
tain varied musical content. Ideally, we want an algorithm
to work well for all types of musical material, and hence
a varied collection in terms of content does not necessar-
ily imply large performance variability due to the song ef-
fect. However, a small collection that contains songs with
a great degree of variability (in terms of difficulty) is likely
to result in performance variability that is dominated by
the song effect and possibly by algorithm-song interactions
(e.g. algorithm X is especially good for jazz but poor for
rock), thus reducing our ability to claim that the observed
differences between the algorithms can be generalized to
the universe of all songs. Using GT [1, 2], we can mea-
sure the proportion of observed variability that is due to
actual differences between the algorithms. This proportion
reflects the stability of the evaluation, and as such it is also
a measure of efficiency: the higher the stability, the fewer
the songs necessary to reliably evaluate algorithms [1, 8].
GT does not only help evaluate the stability of past collec-
tions, but also estimate the reliability of yet-to-be created
collections as a function of their size. However, the results
of GT only hold if the original data used for the analysis
is representative of the wider population of songs to which
we want to generalize in the future.

5.1 Variance Analysis and Collection Stability

In the model in Eq. 1, the grand mean y is a constant, and
the other effects can be modeled as random variables with
their own expectation and variance. As such, the variance
of the observed scores is modeled as the sum of these vari-
ance components:

σ2 = σ2
a + σ2

s + σ2
as (2)

where σ2
a is the variance due to the algorithm effect, σ2

s is
the variance due to the song effect, and σ2

as is the variance
due to the algorithm-song interaction effect (the residual).
This variance decomposition can be estimated by fitting a
fully-crossed ANOVA model for Eq. 1:

σ̂2
as = EMSas = EMSresidual

σ̂2
a =

EMSa − σ̂2
as

|S|
, σ̂2

s =
EMSs − σ̂2

as

|A|
(3)

where EMSx is the expected Mean Square of component
x. In practice, EMSx is approximated by the Mean Square
of component x as computed with the ANOVA model [1,
2]. Using the estimates in Eq. 3 we can estimate the pro-
portion of variability due to the algorithm effect as per
Eq. 2. The stability of the evaluation can then be quan-
tified with the dependability index Φ:



Overall Accuracy Raw Pitch Voicing False-Alarmbσ2
a bσ2

s bσ2
as

bΦ bσ2
a bσ2

s bσ2
as

bΦ bσ2
a bσ2

s bσ2
as

bΦ
ADC04 27% 27% 46% .879 23% 28% 49% .859 55% 21% 23% .961
MIREX05 11% 47% 42% .758 15% 54% 31% .817 57% 20% 23% .971
INDIAN08 16% 50% 34% .600 24% 57% 19% .721 70% 13% 16% .950
04 + 05 + 08 16% 39% 45% .909 16% 43% 41% .912 56% 21% 23% .986
MIREX09 0dB 52% 20% 28% .998 50% 20% 31% .997 81% 5% 14% .999
MIREX09 -5dB 40% 23% 37% .996 40% 24% 35% .996 82% 5% 13% .999
MIREX09 +5dB 58% 17% 26% .998 48% 18% 34% .997 83% 4% 14% .999

Table 3. Variance components and Φ̂ score for all three measures and all six collections plus the joint 04+05+08 collection.
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Figure 4. Dependability index as a function of the number of songs for Overall Accuracy (left), Raw Pitch (middle) and
Voicing False-Alarm (right). The points mark the actual number of songs per collection.

Φ =
σ2
a

σ2
a + σ2

s+σ2
as

|S|

(4)

which measures the ratio between algorithm variance and
the variance in absolute effectiveness scores (total vari-
ance) [1, 2]. This measure increases with the song set size
(i.e. with an infinite number of songs all the observed vari-
ability would be due to algorithm differences) [8].

5.2 Results

In Table 3 we show the estimated proportion of variability
due to the algorithm, song and algorithm-song interaction
effects. For these calculations we used the results of the
MIREX campaign directly, combining the results of the
five algorithms from MIREX 2010 and ten algorithms from
MIREX 2011. In both years the same six test-collections
were used for evaluation, so we can consider the grouping
of algorithms from both years as a single larger evaluation
round leading to a fully crossed experimental design. We
also joined the three smaller collections into a single larger
one referred to as “04+05+08”, discussed in Section 6.

In general, it can be seen that the estimated variance due
to the algorithm effect is much larger in the MIREX09 col-
lections. For overall accuracy, the average is 50%, while
for the earlier collections it is just 18%, and as low as
11% for MIREX05. These differences show that gener-
alizations of results based on the earlier collections are not
very reliable, especially in the case of the MIREX05 and
INDIAN08 collections, because a large part of the vari-
ability in the scores is due to the song characteristics rather
than differences between the algorithms.

Figure 4 shows the estimated dependability index as a
function of the number of songs used (log scaled). The
points mark the value of Φ̂ for the actual number of songs
in each collection (cf. Table 3). Again we observe that the

MIREX09 collections are considerably more stable than
the earlier collections, especially MIREX05 and INDIAN08,
where Φ̂ is as low as 0.6. More interesting is the fact
that the dependability index in the MIREX09 collections
rapidly converges to 1, and there is virtually no apprecia-
ble difference between using all 374 songs in the collection
or just 100: Φ̂ would only drop from an average of 0.997 to
0.990, showing that most of the variability in performance
scores would still be attributable to the algorithm effect.
However, we must also consider the content validity of this
collection (i.e. whether it is representative or not) [13]. We
discuss this in the next section.

6. DISCUSSION

Starting with the annotation offset issue, we note that there
are two crucial parameters that must be fixed in order to
prevent this problem: the precise time of the first frame,
and the hop size. Since 2005, all the annotations use a
hop size of 10 ms, and all algorithms are required to use
this hop size for their output. However, the exact time of
the first frame has not been explicitly agreed upon by the
community. When the short-time Fourier transform (or any
other transform which segments the audio signal into short
frames) is used, it is common practice to consider the time-
stamp of each frame to be the time exactly at the middle of
the frame. Thus, for the first frame to start exactly at time
zero, it must be centered on the first sample of the audio
(filling the first half of the frame with zeros). Nonetheless,
while this is common practice, it is not strictly imposed,
meaning algorithms and annotators might, rather than cen-
ter the first frame on the first sample, start the frame at this
sample. In this case, the frame will not be centered on time
zero, but rather on an arbitrary time which depends on the
length of the frame. Since different algorithms and annota-
tions use different frame sizes, this scenario could lead to
a different fixed offset between every algorithm and every



annotation, leading to a systematic error in the evaluation.
In terms of clip duration, we saw that there is a clear

correlation between the relative duration of the clip (com-
pared to the full song) and evaluation error, suggesting that
performance based on clips might not really predict per-
formance on full songs. However, Figure 3 suggests that
this correlation is independent of the actual duration of the
full song. That is, there might be a duration threshold of x
seconds for which observed performance on clips does pre-
dict performance on full songs (within some error rate), no
matter how long they are. While counter-intuitive at first,
this result does somehow agree with general statistical the-
ory. How large a sample needs to be in order to reliably
estimate unknown parameters of the underlying popula-
tion, is independent of how large the population actually
is, as long as the sample is representative of the popula-
tion. This usually requires to sample randomly or follow
other techniques such as systematic or stratified sampling.
For AME evaluation it does not make sense to randomly
sample frames of a song, but the results suggest that there
might be a sampling technique such that audio clips, if se-
lected appropriately, can be representative of the full songs.

Regarding the collection size, we observed that the ear-
lier ADC04, MIREX05 and INDIAN08 collections are un-
stable because a larger proportion of the variability in the
observed performance scores is due to song difficulty dif-
ferences rather than algorithm differences. As such, re-
sults from these collections alone are expected to be un-
stable, and therefore evaluations that rely solely on one
of these collections are not very reliable. In Table 3 (and
Figure 4) we see that by joining these collections into a
single larger one (“04+05+08”) the evaluation results are
considerably more stable (Φ̂ > 0.9 for all three measures),
and so we recommend fusing them into a single collec-
tion for future evaluations. On the other hand, we saw
that the MIREX09 collections are in fact much larger than
necessary: about 25% of the current songs would suffice
for results to be highly stable and therefore generalize to
a wider population of songs. However, all MIREX09 mu-
sic material consists of Chinese karaoke songs with non-
professional singers, and therefore we should expect the re-
sults to generalize to this population of songs, but not to the
general universe of all songs (essentially everything that is
not karaoke). Therefore, the AME community is found in
the situation where the collections with sufficiently varied
music material are too small to be reliable, while the ones
that are reliable contain very biased music material.

7. CONCLUSION

In this paper we analyzed the reliability of the evaluation
of Audio Melody Extraction algorithms, as performed in
MIREX. Three main factors were studied: ground truth
annotations, clip duration and collection size. We demon-
strated how an offset between the ground truth and an al-
gorithm’s output can significantly degrade the results, the
solution to which is the definition and adherence to a strict
protocol for annotation. Next, it was shown that the clips
currently used are too short to predict performance on full

songs, stressing the need to use complete musical pieces.
It was also shown that results based on one of the ADC04,
MIREX05 or INDIAN08 collections alone are not reliable
due to their small size, while the MIREX09 collection,
though more reliable, does not reflect real-world musical
content. The above demonstrates that whilst the MIREX
AME evaluation task is an important initiative, it currently
suffers from problems which require urgent attention. As
a solution, we propose the creation of a new and open test
collection through a joint effort of the research community.
If the collection is carefully compiled and annotated, keep-
ing in mind the issues mentioned here, it should, in theory,
solve all of the aforementioned problems that current AME
evaluation suffers from. Furthermore, we could consider
the application of low-cost evaluation methodologies that
dramatically reduce the annotation effort required [14]. Fi-
nally, in the future it would also be worth studying the ap-
propriateness of the evaluation measures themselves, the
accuracy of the manual ground truth annotations and fur-
ther investigate the effect of clip duration.
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