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Abstract

Audio content sharing on online platforms has become increasingly popular. This
necessitates development of techniques to better organize and retrieve this data.
In this thesis we look to improve audio retrieval through content and metadata
categorization in the context of Freesound. For content, we focus on organiza-
tion through morphological description. In particular, we propose a taxonomy
and thresholding-based classification approach for loudness profiles. The ap-
proach can be generalized to structure information about the temporal evolution
of other sound attributes. To this end, we also discuss our preliminary findings
from extension of this methodology to pitch profiles. On the other hand, meta-
data systematization has been approached through a topic model known as the
Latent Dirichlet Allocation (LDA). Herein automatic clustering of tag informa-
tion is performed to achieve a higher level representation of each audio file in
terms of ’topics’.

We evaluate our approach for both the tasks through several experiments con-
ducted over two datasets. This thesis finds immediate application in online au-
dio sharing platforms and opens up several interesting future research avenues.
Specifically, evaluation indicates that our methods can be immediately applied to
improve Freesound’s similarity and context-based search. Moreover, we believe
our work on content categorization makes it possible to include an advanced
content-based search facility in Freesound.
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Chapter 1

INTRODUCTION

There is an exponential increase in the amount of annotated multimedia con-
tent on the internet. This requires development of sophisticated techniques to
classify, index and retrieve this content for better navigation and storage. In this
thesis we focus on Freesound1 which is an online database of sounds where audio
clips are shared by users under the creative commons license [Font et al., 2013].
This database, which is now used by more than four million users continues to
expand each day. Each uploaded sound in the database is accompanied by a
set of tags and description. Currently, users can browse through sounds using
tags and content-based audio similarity search (or query-by-example). Freesound
allows for similarity search through content descriptors, however it is not opti-
mized. Some mid/high level descriptors are missing such as those representing
the evolution of sound dynamics/pitch etc. and the tag information is not uti-
lized. As a consequence, the search results are often not relevant. This makes
conducting structured content search a persisting problem.

1.1 Motivation

The general motivation for this thesis arises from the need to structure content
and metadata present in Freesound. In particular, we consider the following
problems:

1. The current retrieval system does not utilize any perceptual criteria or
information about sound’s temporal evolution. As a result we are faced
with two primary difficulties:

1http://www.freesound.org.
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• Audio search engines, like Freesound contain many abstract sounds
which are difficult to access through a text-based search. For instance,
for the class of sound effects, where a sound might lack a source or is
not adequately described in words, retrieval would be difficult without
a perception based advanced search. In general, some sound engineers
or artist also tend to have a template of ”how the sound should be
?” in terms of its loudness or pitch profile. We believe that giving
people the ability to filter sounds based on such criteria would help
improve the retrieval results and user experience.

• Users are often presented with irrelevant similarity search results be-
cause it disregards the temporal evolution of several perceptually rele-
vant features. Refining the results of this search based on such criteria
could help improve the retrieval quality.

2. The tags are noisy and unstructured. This is a common problem faced by
manual tagging systems like that of Freesound. In this direction, we wish
to categorize tags ’meaningfully’ by determining a concise representation
and subsequently evaluate its use for retrieval.

1.2 Aim of this thesis

In this thesis our primary objective is to organize unstructured data in Freesound
through audio content and metadata categorization for better retrieval. Specif-
ically, for organizing content we focus on a taxonomy based on morphological
description and similarly, look for higher level semantic representation for the
associated metadata (refer to Fig. 1.1). For the former task, we focus on ana-
lyzing the sound effects (SFX) class in Freesound. The SFX class includes sounds
from a very broad range, for example, digitally generated glitches, sirens, foley
sounds, modified instrument samples and ambient sounds. We believe this would
provide us with a heterogeneous subset of sounds which has a potential for being
better characterized by their own internal characteristics than by their source of
generation.

1.3 Thesis Structure

The thesis is organized as follows:

• Chapter 2 - Review of literature on relevant topics such as morphological
description, content-based audio retrieval systems and topic models

2
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Categorization

Content Metadata

Taxonomical organization 
through 

morphological description

Learning the underlying 
topic structure

Figure 1.1: Thesis Outline

• Chapter 3 - (i) Methodology for morphological description of content based
on Schaeffer’s typo-morphology [Schaeffer, 1966] (ii) Related experiments
and discussion

• Chapter 4 - Provides technical details for Latent Dirichlet Allocation to-
gether with the evaluation experiments and their discussion

• Chapter 5 - Summary and Future work

3



“output” — 2015/8/31 — 12:47 — page 4 — #14



“output” — 2015/8/31 — 12:47 — page 5 — #15

Chapter 2

STATE OF THE ART

In this chapter we review literature on concepts and algorithms relevant to this
thesis. In the sections that follow, we investigate morphological description,
content-based audio retrieval systems and topic models.

2.1 Morphological Description

In this section, we discuss the perceptual attributes and their taxonomical orga-
nization in the context of Schaeffer’s seminal work Traité des objets musicaux
[Schaeffer, 1966]. We begin with a brief overview of the primary attributes of
sound: loudness, pitch and timbre. This is followed by a discussion on taxonom-
ical organization for characterizing aforementioned perceptual attributes.

2.1.1 Sound Attributes

1. Loudness - American National Standards Institute (ANSI) defines loud-
ness as that attribute of auditory sensation in terms of which sounds can
be ordered on a scale extending from quiet to loud. This percept is depen-
dent upon both level and frequency. Loudness has been studied in terms
of the equal loudness curves where a 1kHz tone is used as a reference. A
1kHz tone at 40dB SPL is said to produce a loudness level of 40 phons.
Measurements are made through loudness matching experiments. Thus,
any sound perceived as loud as the reference tone also has a loudness level
of 40 phons.

Loudness’ dependence on critical bandwidth is a crucial one and can be
observed using complex sounds. Herein the loudness increases additively
only when the energy is spread across critical bands. Keeping this in view,

5
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many loudness computation methods follow the steps expressed in Fig.
2.1 [Timoney et al., 2004]. Here the frequency decomposition would be in
relation with the critical bands. Perhaps the most well-known model is the
one proposed by Zwicker [Moore and Glasberg, 1996]. In this work we use
a similar approach for loudness computation (discussed in chapter 3).

Figure 2.1: Loudness Computation [Timoney et al., 2004]

2. Pitch - According to ANSI, pitch can be defined as that attribute of audi-
tory sensation in terms of which sounds may be ordered on a scale extending
from low to high. The physical correlate for pitch is the fundamental fre-
quency denoted by f0. Hartman relates the two when he says sound has
certain pitch if it can be reliably matched by adjusting the frequency of a
sine wave of arbitrary amplitude [Hartmann, 1996]. However, the ’missing
fundamental’ phenomena is very well known, where pitch is perceived even
in the absence of the fundamental.

Various methods have been proposed for the computation of fundamen-
tal frequency, both in time and frequency domain. Algorithms for mono-
phonic pitch estimation rely on the zero-crossing rate, autocorrelation func-
tion (in time or frequency), cepstrum, spectral pattern matching (two-way
mismatch) and auditory model based computations. An alternative of

6
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the autocorrelation method, popularly known as YIN was introduced in
2002 [De Cheveigné and Kawahara, 2002]. The problem of f0 estimation
in polyphonic signals is especially hard. However, several iterative and joint
multipitch estimation methods have been proposed [Klapuri, 2005].

Despite the existence of many algorithms the problem poses difficulty due
to several factors such as quasi-periodicity, noise, presence of temporal
variations and ambiguous events.

3. Timbre - Timbre is the most difficult of these attributes to define and
characterize primarily because of its dependence on multiple factors. ANSI
defines timbre as, that attribute of auditory sensation in terms of which a
listener can judge that two sounds similarly presented and having the same
loudness and pitch are dissimilar.

To study features which affect timbre early studies used dis-similarity judge-
ment between pairs of sound and multidimensional scaling analysis to
propose timbre spaces [Herrera-Boyer et al., 2003, McAdams et al., 1995].
From Fig. 2.2 we see that the space comprises of rise time, spectral cen-
troid and spectral flux. However, its perception is dependent upon the
joint effect of a wide range of attributes namely shape of the temporal
and spectral envelope, onset dynamics, time variation of the spectrum
[Shamma, 2003, Schedl et al., 2014]. Researchers have attempted to cap-
ture these dependencies by extracting various features [Schedl et al., 2014,
Peeters et al., 2011, Herrera-Boyer et al., 2003]. List of commonly ex-
tracted features includes spectral centroid (correlated with the brightness
of sound), Mel frequency cepstral coefficients (MFCC), spectral flux, log-
attack time, temporal centroid. For a detailed list of timbre descriptors
please refer to [Schedl et al., 2014, Peeters et al., 2011].

2.1.2 Taxonomical Organization

A sound can be described in terms of the above stated perceptual characteristics
or based on its source of generation. Though the source-centric description is
important, online search engines host a large number of sounds which are either
digitally generated or have no clearly identifiable source. Thus a classification
in terms of perceptual traits (or morphological characteristics) would provide a
more generic description for any kind of sound. For instance, the class of sound
effects would be better characterized through perceptual attributes than by their

7
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Figure 2.2: Timbre Space [McAdams et al., 1995]

source. In this context, we discuss Schaeffer’s work [Schaeffer, 1966] on typo-
morphology which has been utilized to build taxonomies for sound indexing and
retrieval [Ricard and Herrera, 2004, Peeters and Deruty, 2010].

Schaeffer defines causal, semantic and reduced listening as three perspectives
for describing a sound. Causal refers to recognition of the sound’s source, se-
mantic to identifying the meaning attached to a sound and reduced points to
the description of a sound regardless of its cause or meaning. From the latter
comes the concept of a sound object which is defined as a sound unit perceived
in its material, its particular texture, its own qualities and perceptual dimensions
[Chion, 1983]. Schaeffer proposes to describe these objects using seven morpho-
logical components, grouped into three ’criteria’. Fig. 2.3 concisely presents this
with a short description of each of them. As indicated by the three clusters in the
figure, the matter/form (or shape) pair are central to Schaeffer’s morphological
taxonomy. As described in [Chion, 1983],

Matter is what persists almost unchanged throughout its duration,
it is what could be isolated if it were immobilized, so that we could
hear what it is at a given moment of listening.
Form is the course which shapes this matter in duration, and perhaps
makes it evolve.

8
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The variation criteria comes about when both form and matter vary. Several
descriptors have been explored in literature for quantification of these constructs
and the given morphological components. Table 2.1 gives a summary of the
suggested scheme from two major works in this area. However, a complete list
of such descriptors and their representation for various models still remains to be
studied in detail.

Figure 2.3: Schaeffer’s morphological criteria [Cano et al., 2004]

We must emphasize that the concept of a sound object is an abstract one. It
is difficult to give a precise definition. For completeness, we also mention here
Gaver’s taxonomy [Gaver, 1993] which is better suited for the class of environ-
mental sounds. His classification is based on production of sounds which can be
categorized as aerodynamic sounds, liquid sounds and sounds due to vibrating
objects. This organization is from the ecological and physical perspective. For
any non-ecological sound such an organization would pose difficulties.

For the purpose of this thesis, our primary interest is the exploration of at-
tributes which support reduced listening. In the present work, we base our
taxonomical organization on loudness (dynamics) and pitch profiles. We use
[Peeters and Deruty, 2010] and [Ricard, 2004a, Ricard and Herrera, 2004] as key
references. We propose a few new features to capture certain additional charac-
teristics of these profiles. Chapter 3 provides the details of our implementation

9
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and approach.

Morphological Types Types
Criteria [Ricard and Herrera, 2004] [Peeters and Deruty, 2010]

Dynamic Profiles

Unvarying stable
Varying:
-Impulse impulsive
-Iterative (several transients) -
-Crescendo ascending
-Decrescendo descending
-Delta (Crescendo- Decrescendo) ascending/descending
-Other -

Pitchness
Pitched

-
Complex
Noisy

Pitchness Profile
Unvarying
Varying

Melodic Profiles

Unvarying stable
Varying: up
-Continuous down
-Stepped (several transients) up/down

down/up

Complex Iterative -

Non-Iterative
Iterative:
-Grain
-Repetition

Table 2.1: Morphological Description Scheme as given in
[Peeters and Deruty, 2010] and [Ricard and Herrera, 2004]

2.2 Content-based Audio Retrieval Systems

We discuss next some important content-based audio retrieval systems proposed
in literature. In the past, researchers have tackled content-based audio retrieval
through both, purely content-based and hybrid (content+tags) approaches. In
subsequent sections we investigate various algorithms proposed under both of
these approaches. Table 2.2 provides a brief overview of audio retrieval systems.

10
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2.2.1 Content-based Approaches

The general methodology followed by approaches under this category is to first
extract and process relevant features from audio and then define a similarity
measure over them to retrieve sounds acoustically similar to a query sound.

An early work in this area is that of Foote, who proposes a template matching
approach using tree-vector quantizer [Foote, 1997]. Though, the method scales
well its major drawback is that it does not take into account any perceptual
criteria. Moreover, the experiments are carried out over a limited category of
sounds. Given the variety in the sound effects category such methods would not
perform well. Following from this basic pattern matching paradigm, a content-
based audio retrieval system known as Soundspotter was proposed by Spevak et
al. [Spevak and Favreau, 2002]. The system allows the user to search for similar
instances of any specific part of an audio clip. The general scheme of the system
is as shown in Fig. 2.4. The system relies on pattern matching algorithms for
retrieval. Several methods such as the dynamic time warping, histogram match-
ing, string matching and trajectory matching using self organized maps (SOM)
have been discussed. While dynamic time warping can handle vectors of different
length that is not the case for trajectory matching.

Figure 2.4: Soundspotter [Spevak and Favreau, 2002]: System overview

In 2005, a dominant feature vector method for audio similarity was proposed

11
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wherein a new similarity measure was shown to be better than the conven-
tional KL divergence, L2 norm and Bhattacharya distance [Gu et al., 2005]. This
method essentially computes the eigen-decomposition of the feature vector co-
variance matrix. They report better results than those obtained when using mean
and variance of features. The similarity is computed as the weighted sum of the
similarity between their dominant feature vectors.

Helen and Lahti [Helen and Lahti, 2006] propose a HMM and feature histogram
based approach. In the former, separate models for the example and background
are made. Subsequently, the likelihood of sounds belonging to each of those
models is computed. Evidently, the ones with the higher likelihood for the exam-
ple model are considered to be similar. The primary problem with this approach
is the lack of instances for training the example model. For feature histogram-
based approach, first, the quantization levels are estimated based on the features
calculated from the whole dataset. Each audio clip is then represented as a
feature histogram and distances are computed based on a threshold. The major
downside of this method is that it disregards the temporal variations. More-
over, each of these algorithms rely on a certain set of pre-defined features which
might adversely affect their applicability to any general audio sample which is not
characterized by the feature set. To overcome this problem perceptual coding
and compression based similarity measure was proposed by Helen and Virtanen
[Helén and Virtanen, 2007b]. An overview of this unique approach is as given
in Fig. 2.5. Herein the normalized compression distance is used as a similarity
measure where the idea is to first compare the compression ratios achieved on
compressing two files separately and jointly. It is a method with practical utility,
however for more specific problems one might lose information which is otherwise
gained from specific feature vectors.

Figure 2.5: Similarity measure based on perceptual coding and compression
[Helén and Virtanen, 2007b]: System overview

Another approach is to model feature vectors extracted from an audio proba-

12



“output” — 2015/8/31 — 12:47 — page 13 — #23

bilistically and defining similarity metric as the distance between feature distri-
butions. Helen et al. [Helén and Virtanen, 2007a] compute euclidean distance
between gaussian mixture models (GMMs) trained over the feature vectors from
two audio clips. Probability-based similarity measures have also been propounded
[Virtanen and Helen, 2007]. The techniques are shown to be successful for audio
content. Cross-likelihood ratio tests are introduced for comparing the distances
based on probabilistic models.

In this thesis, we work in the context of freesound.org which also provides a
content-based similarity search facility. Here a kNN search is performed over PCA
features extracted using the Essentia1 [Bogdanov et al., 2013] framework. The
euclidean similarity measure is used. The features consist of statistics computed
over various low-level features. Thus the information embedded in temporal
variations is lost.

2.2.2 Hybrid Approaches

Approaches utilizing both content and textual information tackle the problem of
audio retrieval and auto-tagging simultaneously. The general scheme has been to
define two spaces, namely acoustic and semantic and then discover relations or
correspondences between the two. This also enables such approaches to retrieve
acoustically similar sounds through text searches. Most hybrid approaches have
primarily tackled this issue.

Turnbull et al. deal with the problem of music retrieval through text search
by determining a GMM-based acoustic space distribution over each word in the
vocabulary [Turnbull et al., 2008]. This helps them retrieve and annotate songs
with meaningful words. They propose the use of weighted mixture hierarchies
expectation maximization for parameter estimation, which is a scalable approach.
In order to show that their method is general, they perform this task specifically
for the case of sound effects. They use the bag-of-feature vector representation
for the audio. This work does not take into account the temporal dependencies
of the audio data and uses the same set of features to represent all types of
audio. Moreover, the problem of sparse and noisy tagging like in real world data
has not been tackled.

Slaney proposed a clustering based GMM approach where, for each query, prob-
ability over clusters in the acoustic space is computed [Slaney, 2002]. The pro-
posed approach is not scalable and its use of GMM disregards the temporal

1http://essentia.upf.edu

13
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variations. Hoffman et al. use a probabilistic generative model called codeword
bernoulli average to determine the joint probability distribution function for tags
and content [Hoffman et al., 2009]. The model assumes that the tags are con-
ditioned on the audio content. Here, unlike other models, the bag-of-codewords
approach is used for feature representation. This method is specifically tested
for music auto-tagging and retrieval.

Some works have utilized simpler schemes such as using k-NN to perform audio
annotation and classification [Cano and Koppenberger, 2004, Cano et al., 2005].
One nearest-neighbour decision rule is used where any unknown sound borrows
its tags from its nearest neighbour. Normalized manhattan distance of the fea-
tures is used as a similarity measure. It is reported in [Cano et al., 2005] that
standard deviation normalized euclidean distance does not work well in this set-
ting. It is also illustrated that contextual information helps disambiguate the
retrieval results as two recordings from different sources might sound the same
perceptually. These works consider unambiguously labelled datasets, however in
the case of Freesound the context information is noisy. In addition, scalability of
such a system to a large dataset is also an issue.

Recently, Mesaros et al. proposed an integrated similarity measure i.e. a weighted
linear combination of similarities in content and text space [Mesaros et al., 2013].
The measure given by C = (1−w)A+wS where A, S and w represent content
similarity matrix, semantic similarity matrix and weighting coefficient respectively.
Though the objective evaluation metrics seem to give satisfactory retrieval results,
the method overestimates it’s recall metric. Also, no perceptual(or listening)
tests have been carried out. This metric has also been applied to Freesound’s
similarity search [Dimitriou, 2014].

2.2.3 Feature Selection and Representation

We have already discussed the proposed frameworks for the task of audio re-
trieval. Using any model requires us to determine appropriate description and
representation for both content and text. In this section we delineate the fea-
tures and approaches researchers have taken to represent sounds and annotations.
This essential step is often overlooked in systems where thousands of descrip-
tors are computed and fed to a dimensionality reduction algorithm like Principal
Component Analysis. While this approach might work for certain class of prob-
lems, in sounds, where perception plays a crucial role, careful feature selection is
necessary.

1. Content

14
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The MFCCs were used as feature vectors by all the works discussed previ-
ously. The following additional features have also been tested:

• Spectral Descriptors - spectral spread, spectral flux, spectral centroid,
spectral flatness, harmonic ratio, spectral kurtosis, skewness, bark-
band energy

• Temporal Descriptors - zero crossing rate, energy, power variance

In order to take into account the temporal variations of the feature vec-
tors even their mean and the variance are computed. The representa-
tion used by each work varies depending upon their use of a particu-
lar framework. Some works, like those of [Foote, 1997, Slaney, 2002,
Helen and Lahti, 2006, Helén and Virtanen, 2007a, Turnbull et al., 2008,
Hoffman et al., 2009, Mesaros et al., 2013] disregard the temporal varia-
tion due to their modelling based on feature histograms, bag-of-feature-
vectors, bag-of-codewords and GMM-based probability distributions.

2. Tags and Description

Gathering reliable and non-sparse semantic data is another persisting prob-
lem. So far, well-labeled datasets have been utilized by researchers. How-
ever, in a real world case, like that of freesound.org this problem must
be dealt with. WordNet has emerged as a popular tool for systematic
semantic analysis [Cano et al., 2005, Mesaros et al., 2013] where the hi-
erarchy provides a means to extend the tags meaningfully. Other tech-
niques include tag propagation and expansion as proposed in [Sordo, 2012,
Font et al., 2014].

For context the usual approach is to use a vector space model where each
element of the vector is indicative of the presence of a particular tag. The
’presence’ could be defined using ’soft’ (weighted) or ’hard’(binary) con-
straints. Such representations are particularly important for approaches
requiring to learn joint distributions over multimodal data. Hoffman et
al. use binary representation for annotations given by yj,w ∈ {0, 1} which
indicates the presence of a tag w for a song j in their database. An-
other approach is to use an annotation vector for each song given by
y = (y1, y2, . . . , yn) where yi for i ∈ {1, . . . , n} represents the semantic
weights attached with each word [Turnbull et al., 2008]. Semantic weights
are computed using an average statistic of votes given by the annotators.
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Finally, a commonly used representation utilizes the tf − idf statistic com-
putation for each word.
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Content-based
Approaches

Study Framework/Model Similarity Measure

[Foote, 1997] Template Matching L2 norm, cosine distance

[Spevak and Favreau, 2002] Pattern Matching Algorithms L2 norm, Edit distance

[Gu et al., 2005] Dominant Feature Vectors Weighted Inner product Sum

[Helen and Lahti, 2006] HMM Likelihood

Likelihood Ratio Test Likelihood

Feature Histogram L1, L2, Linf norms, KL Divergence

[Helén and Virtanen, 2007b] Perceptual Coding and Compression Normalized Compression Distance

[Helén and Virtanen, 2007a] GMM L2 norm

[Virtanen and Helen, 2007] HMM and GMM Cross-Likelihood Tests

Hybrid
Approaches

[Slaney, 2002] MPESAR Probability-based (Model-dependent)

[Cano et al., 2005] k-Nearest Neighbour Normalized Manhattan Distance

[Turnbull et al., 2008] GMM Probability-based (Model-dependent)

[Hoffman et al., 2009] Codeword Bernoulli Average Probability-based (Model-dependent)

[Mesaros et al., 2013] GMM Linear Weighted Combination

Table 2.2: Overview of Audio Retrieval Systems

17
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2.3 Topic Models

As stated in [Blei, 2012]:

Topic models are algorithms for discovering the main themes that
pervade a large and otherwise unstructured collection of documents.

This is extremely useful in organizing datasets for better retrieval and navigation.
Keeping in view the scope of this thesis, in this section we discuss the general idea
behind topic models, give an introduction to latent dirichlet allocation (LDA) and
discuss several applications to retrieval and data navigation.

The latent dirichlet allocation is the most popular and the simplest topic model
[Blei et al., 2003]. The basic intuition behind LDA and topic models in general is
best explained through Fig. 2.6. LDA assumes that any document is generated
from a set of topics. For instance, a news article might be composed of several
topics namely sports, politics and entertainment. More formally, LDA models
documents as a mixture of topics where each topic is represented as a distribution
over words. It is important to emphasize here that these models discover these
underlying topics automatically. LDA appeared in 2003 as an improvement over
the probabilistic latent semantic indexing (pLSI) [Hofmann, 1999]. It improved
over the following drawbacks of pLSI [Blei et al., 2003]:

• pLSI does not have a natural way of assigning topic probabilities to unseen
documents

• pLSI suffers from overfitting

Hence, given that the corpus was generated through the probabilistic generative
approach defined by LDA the aim is to determine the model parameters and utilize
the posterior distribution for various tasks such as topic visualization, document
visualization, similarity search and text-based search [Blei and Lafferty, 2009].
Topic visualization would involve exploring the topic-word matrix and similarly
documents can be explored through the topic-document matrix. The application
to visualization has been explored for wikipedia articles [Chaney and Blei, 2012].
They also provide a framework that could be used for various other datatypes.
For similarity search one could utilize the topic-document matrix as feature vec-
tors for determining similar documents.

LDA has served as the basis for many topic models and several extensions like cor-
related and dynamic topic models [Blei and Lafferty, 2009] that appeared in the
last decade. Several non-probabilistic methods have also been proposed, for ex-
ample the seminal work on latent semantic indexing (LSI) [Deerwester et al., 1990]

18
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Figure 2.6: Elements of Latent Dirichlet Allocation

and non-negative matrix factorization[Lee and Seung, 2001]. However the mod-
ularity and extendability to new data makes generative approaches advantageous.
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Chapter 3

CONTENT CATEGORIZATION
BASED ON MORPHOLOGICAL
DESCRIPTION

In this chapter we establish our framework for sound categorization based on
the temporal evolution of its attributes such as loudness and pitch. We test our
approach through several experiments including a subjective evaluation.

3.1 Loudness Profiles

Loudness profile can be defined as the temporal evolution of a sound’s loudness.
Its categorization schema is as shown in Fig. 3.1. We proceed with first classifying
the dataset into complex and single events. As indicated in the figure, for single
events the loudness curve could belong to one of the following categories:

1. Impulsive

2. Stable

3. Increasing

4. Decreasing

5. Increasing-Decreasing (or Delta)

6. Others

A sound is said to be impulsive if it has either a sharp attack or is of a very
short duration. It is considered to be of stable class if the loudness of the sound
does not vary much. It is said to be of increasing (or decreasing) category if the
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loudness increases (or decreases) for significant portion of the sound’s duration.
Similarly, the sound would be of delta class if it is perceived of first increasing and
then decreasing loudness. The others class would contain sounds which lie in the
”confusion” areas. Some of them are even difficult to categorize perceptually.
We discuss the definition of each of these classes more formally in Sec. 3.1.2.
To categorize audio based on the schema shown in Fig. 3.1 we discuss next our
loudness profile modeling and classification methodologies.

Dataset

Complex Events Single Events

Impulsive Stable Varying

1.  Increasing
2.  Decreasing
3.  Increasing-Decreasing
4.  Others

Figure 3.1: Content categorization scheme based on loudness profiles

3.1.1 Modeling Methodology

Each of the different steps involved in profile computation and feature extraction
are delineated below. Excluding the addition of step 2, modeling is carried out
as in [Peeters and Deruty, 2010].

1. Loudness Computation - For each windowed frame of the signal the spec-
trum is computed and outer-mid ear filtering is performed [Kabal, 2002].
The transfer function for ear filtering is given by eqn. 3.1.

Adb(f) = −2.184
(

f

1000

)−0.8
+ 6.5e−0.6(f/1000−3.3)

2 − 0.001

(
f

1000

)3.6

(3.1)
Next, the energy in each bark band, denoted by E(z, t) is obtained. The
loudness is then computed as
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l(t) =
∑
z

l′(z, t) where l′(z, t) = E(z, t)0.23 (3.2)

In order to smooth the signal, l(t) is lowpass filtered. Its maximum value,
lm is determined and the part of l(t) over 10% of lm is considered for
subsequent stages. The cut-off of the filter was set at 2 Hz after determin-
ing its effects on certain post-processing issues. Since we are interested in
relative measures, the time axis is normalized for all the sounds.

2. Complex and Single Event Classification - Clearly, the profile descrip-
tion would apply to only single sound events. Since the sound effects
dataset we use also contains complex events, we describe here our ap-
proach for automatically separating complex and single events using the
loudness curve computed in the previous step. The process is summarized
in Fig. 3.2.

First, an onset detection function is constructed from the derivative of the
loudness profile and subsequently, peaks of this function are detected using
a running mean threshold. Any sound with more than one peak is classified
as complex. Though we do not cater to cases with soft onsets, from
the loudness profile characterization perspective we believe this approach
suffices. Onsets are detected using essentia’s Onsets function. Hereafter,
we only consider the loudness curves for single events.

Loudness Profile

Profile Derivative

Onset Detection

Complex/Single Event
Classification

Figure 3.2: Complex-Single event classification process
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3. B-Spline Modeling - In order to extract meaningful descriptors for our
classification we obtain a first-order B-spline approximation (or straight line
approximation) for the loudness curve that is continuous at lm. Since the
decay of sounds can be modeled using eqn. 3.3 [Peeters and Deruty, 2010],
for a straight line approximation we must express the loudness function in
the log-scale.

l(t) = Ae−α(t−tm) (3.3)

Next, we consider three knot points with co-ordinates [(ts, ls), (tm, lm), (te, le)]
where the subscripts s and e represent the start and the end of the thresh-
olded loudness curve respectively. At the end of this step we have a straight
line approximation for the filtered, thresholded log-scale loudness curve.

4. Extracted Features

- As shown in Fig. 3.4, we extract the following slope and relative duration
features from this representation:

• RD1 - Relative duration given by tm − ts
• RD2 - Relative duration given by te − tm or 1-RD1

• S1 - Slope of the approximation from where if begins (ts) to the
maximum (tm)

• S2 - Slope of the approximation between maximum (tm) and the end
point (te)

- We also compute the absolute effective duration at 10% (ED10) and
40% (ED40) i.e. the duration for which the profile is above 10% and 40%
of its maximum, respectively. Also, the relative (normalized time axis)
effective duration at 80% (ED80) is computed. These features help us
classify impulsive and stable sounds.

We propose two additional descriptors in order to take into account the loudness
modulations. Both stable and varying class can contain sounds of this nature.
In order to extract these features the computation is performed over m(t) which
is the signal obtained after subtracting the running mean from the profile curve.
Thus, the characterization is done in terms of the modulation rate and extent:

• Modulation Rate - The zero crossing rate of m(t) provides a good quan-
tification of this parameter

• Modulation Extent - The mean of the standard deviation of m(t)
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Figure 3.3: Profile Computation Methodology [Peeters and Deruty, 2010]

3.1.2 Thresholding-based Profile Classification

Approaches

In order to achieve the proposed classification one could either look at machine
learning schemes or a process of manual classification by defining each class based
on criteria one believes would hold true. We opt for the latter, which we call the
thresholding approach, for the following reasons:

• Several ”confusion areas” exist and not all sounds would fall into one of
the classes. Hence, we would like the system to be flexible enough to
incorporate such cases.

• For assisting users in retrieval tasks we would like to provide them with a
facility to control some meaningful parameters.

Though we discuss our experiment with a decision tree based rule learning algo-
rithm (in Sec. 3.2), the machine learning approach has the following limitations:
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Figure 3.4: Loudness Profile Descriptors [Peeters and Deruty, 2010]

• It is very difficult to create large labeled datasets representative of each
class from very diverse unstructured databases like that of Freesound

• Classification by unsupervised learning schemes, like clustering, might re-
sult into centroid positions or parameters that seem non-meaningful from
the problem’s perspective. Moreover, interpreting the results of such an
approach will also be difficult

Category Definitions for Classification

We now discuss the definitions for each of the loudness profile classes from the
viewpoint of applying a threshold. Fig. 3.5 provides a good visual representation
and ”rationale” for our approach. Consider for instance the increasing class (Fig.
3.5 B), ideally the sound would increase in loudness for all its duration (first row),
however, in reality, the sound’s loudness would fall after rising for a ’significant’
part of the sound’s total duration. Thus, with the thresholding approach we say
that a sound would belong to the increasing category if it rises for atleast 70% of
its total duration (denoted by a dashed line). In this case, we have set a threshold
on the duration for which the sound must rise to be classified as increasing. The
other profiles can be understood similarly.

Stated more formally, our aim is to determine the deviation, δ of relevant features
from the ”ideal case” (Fig. 3.5) such that all the sounds with values above (or
below) δ clearly belong to a particular category. For simplicity in defining these
thresholds, for all the classes (except impulsive), we consider threshold over a
single feature.

1. Impulsive: ED40 ≤ δ or ED10 ≤ γ, where δ = 0.25 and γ = 0.3
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2. Stable: ED80 ≥ 1− δ, where δ = 0.3

3. Increasing : RD1 ≥ 1− δ, where δ = 0.3

4. Decreasing : RD2 ≥ 1− δ, where δ = 0.3

5. Delta: |RD1− 0.5| ≤ δ, where δ = 0.1

6. Others: According to the definitions above, the others class has two
components others-increasing: 0.6 < RD1 < 0.7 and others-decreasing
0.3 < RD1 < 0.4

We also make the observation that for a thresholding approach we would first
need to separate the impulsive and stable class from the set of single events.
This is also a result of the features we extract. For instance, after a straight line
approximation the features of a stable sound might be very similar to that of a
sound from the delta class. This also explains the need for the effective duration
features we mentioned in the previous section.
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(A) Stable (B) Increasing (C) Decreasing (D) Delta

Figure 3.5: Loudness Profile : The first row displays the ideal case templates for
each of the categories, however (as shown in the second row) the real case would
almost always have an ”increasing-decreasing” profile. The dashed lines in each
of the graphs denote the thresholds we must determine
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3.2 Experimental Results

3.2.1 Dataset

For this set of experiments we use the FS-SFX dataset which was created by
downloading content from Freesound using the ’fx’ tag as a filter. It was also
ensured that all the sounds were less than 10s in duration. It contains the
high quality ogg preview, content descriptors and metadata for a total of 5248
sounds. All the content based experiments have been carried out using this
dataset. A subset of this data (238 sounds) was manually annotated according
to the loudness profile in order to perform a first check on several classification
tasks. The details of this reduced dataset, referred to as SFX-Reduced are
given in Table 3.1.

Class Number of sounds

Complex 57

Impulsive 53

Stable 28

Increasing 30

Decreasing 36

Delta 34

Table 3.1: SFX-Resuced Dataset Details

3.2.2 Objective Evaluation

1. Complex/Single Event Detection - SFX-Reduced

Through this experiment we evaluate the accuracy of our methodology for
complex/single event classification. The parameters were tuned through
trial and error over the SFX-Reduced dataset. It was important to have
a small number of false positives i.e. to prevent single events from being
labeled as complex.

Critical parameters: Lowpass filter cut-off= 2Hz, mean threshold = 0.5
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Results

Predicted

Complex Single
A

ct
ua

l

Complex 45 12

Single 28 153

Table 3.2: Confusion Matrix: Complex/Single Event Classification

Class Number of sounds

Complex 1944

Single 3304

Table 3.3: Complex/single event classificaton for FS-SFX dataset

From Table 3.2 we observe that our system gives reasonably good accuracy
by classifying correctly 78.9% (45/57) of complex and 84.5% (153/181)
of single events.

The number of false positives depended upon the lowpass filter cut-off. A
high cut-off meant that though all the complex sounds were segregated,
many single events were also mistakenly discarded. Thus, optimal perfor-
mance depended on both, the mean threshold parameter of the Onsets
function and the low pass filter cut-off.

2. Loudness Profile Classification - SFX-Reduced

Here we provide a comparison and an objective evaluation of our threshold-
ing based approach. First we present the results of both, the thresholding
approach and WEKA’s decision tree-based rule learning algorithm PART
on the SFX-Reduced dataset. PART algorithm’s performance was evalu-
ated with 10-fold cross validation

Parameters: The thresholds were set as described in Sec. 3.1.2. WEKA
implementation of the PART algorithm was used where the default param-
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eter settings gave the best accuracy.

Results

Predicted

Imp Stb Inc Dec Delta Oth-Inc Oth-Dec Cmp

A
ct

ua
l

Imp 32 0 6 4 1 2 0 8

Stb 2 11 6 0 0 0 0 9

Inc 4 0 21 0 0 1 0 4

Dec 2 0 3 19 5 0 5 5

Delta 9 0 6 1 8 2 6 2

Table 3.4: Confusion Matrix: Loudness Profile Classification

Predicted

Imp Stb Inc Dec Delta

A
ct

ua
l

Imp 40 1 2 5 5

Stb 1 24 1 0 2

Inc 3 0 22 0 5

Dec 4 0 1 27 4

Delta 2 3 7 5 17

Table 3.5: PART Algorithm Confusion Matrix: Loudness Profile Classification

• Please note that the sounds were manually chosen (based on percep-
tion) to belong to one of the five classes namely impulsive, stable,
increasing, decreasing and delta. However, the idea was to test the
thresholding system’s performance as a whole. Hence, the confusion
matrix in Table 3.4 is not square and includes the others (oth-inc and
oth-dec) and the complex classes for predictions. As we see, the sys-
tem does mis-classify 28/181 single events into the complex category.
This is not the case for PART algorithm where all the sounds were
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Class Number of sounds

Impulsive 1308

Stable 175

Increasing 508

Decreasing 449

Delta 544

Others-increasing 142

Others-decreasing 178

Table 3.6: Thresholding approach classification for single events over the whole
FS-SFX dataset

treated as single events and were to be classified into one of the five
categories only. (Table 3.5).

• Though the PART algorithm gives us a classification accuracy of
71.8% it requires 19 rules to do so. Whereas the thresholding ap-
proach gives us comparable performance with just 5 rules. Moreover,
with our approach, we have the flexibility to let the user decide on
certain meaningful parameters such as relative duration etc.

• For both the approaches, a sound belonging to other categories has
been mis-classified into the impulsive class. It is particularly evident
for the delta class in Table 3.4. This implies that, for the thresh-
olding approach, using only the effective duration descriptors for the
impulsive class is not sufficient. For borderline cases this proves to
be detrimental.

• The inclusion of the others class i.e. Oth-Inc and Oth-Dec is posi-
tive. Its requirement is especially illustrative in the spread of system
predictions for delta class sounds over all the other classes, for both
the algorithms.

3.2.3 Subjective Evaluation

For this subjective evaluation our goal was to analyze the utility of our framework
for the use case of similarity search. In particular, we compare the performance
of the current Freesound similarity search with a modified version of it. For the
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modified system the similarity search results are obtained after filtering current
system’s results according to the query sound’s loudness profile category.

Experiment Design

Each candidate was presented with retrieval results from two systems for eight
query sounds. Each query sound was followed by top 5 results from the two
systems presented in separate columns, labeled I and II. For each sound, the
system presented in each column was randomized. The task was to carefully go
through each query sound along with its results. The candidate was then asked
to indicate his/her preference for system in column I or II based on the similarity
of its retrieval results to the query sound. They were also provided with a ’No
Preference’ option, in case they did not find any of the systems to be better than
the other. They could listen to each sound multiple times. A screenshot of the
online survey is given in Fig. 3.6.

For each user the 8 query sounds were chosen from a pool of 91 sounds selected
from the SFX-Reduced dataset. These were sounds which were correctly classi-
fied into the five categories namely impulsive, stable, increasing, decreasing and
delta by our thresholding based system (refer to Table 3.4). For the modified
system, the filters used for refining similarity search results are presented in Table
3.7.

Query Sound Category Filter

Impulsive Impulsive

Stable Stable

Increasing Increasing + Others Increasing

Decreasing Decreasing + Others Decreasing

Delta Others Decreasing + Delta + Others Increasing

Table 3.7: Modified system: Filters for refining similarity search results

Results

Nine candidates participated in this online experiment. We obtained a total
of 72 judgements (8 per candidate). Out of these, 25% were ’No preference’
judgments. If we discard these cases, we see from Table 3.8 that 72.2% of the
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Figure 3.6: Online Experiment Interface

Preference

Participants MOD System FS System No Preference

1 4 2 2

2 4 2 2

3 5 1 2

4 5 2 1

5 3 1 4

6 3 3 2

7 5 1 2

8 4 2 2

9 6 1 1

Total 39 15 18

Table 3.8: Online Experiment Participant Results - Here each column under the
Preference heading represents, for each participant, the number of responses in
favor of Modified System (MOD System), Freesound System (FS System) and
’No Preference’ respectively
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Preference

Class Number of sounds MOD System FS System No Preference

Impulsive 25 17 3 5

Increasing 17 9 5 3

Decreasing 17 7 2 8

Stable 8 4 3 1

Delta 5 2 2 1

Total 72 39 15 18

Table 3.9: Online Experiment Profile-Specific Results - Here each column under
the Preference heading represents, for each class, the number of responses in
favor of Modified System (MOD System), Freesound System (FS System) and
’No Preference’ respectively

judgements were in favor of the modified system. To further validate the per-
formance, we observe in Table 3.8 that for all the candidates, the number of
responses in favor of the modified system were always greater than or equal to
those in the favor of current Freesound system (note that equality held only in
one case). This gives us strong preliminary evidence to claim that the modified
version is an improvement over the current Freesound system.

It is also interesting to see Table 3.9 which is an analysis of user preference for
systems with respect to the loudness profile of the query sound. The table should
be read as follows: for instance, 17 of the 72 responses were for sounds belonging
to the increasing class, where 9 responses were in favor of the modified system.
We see that the modified system performs particularly well for impulsive and
increasing class. However, that is not the case for stable and delta class. Two
primary reasons for this could be: (i) We do not take into account the timbral
similarity while filtering for loudness profile (ii) The classes are not sufficiently
well defined.

3.3 Conclusion and discussion

In this chapter we have described our framework for content categorization on
the basis of loudness profiles. Through the proposed thresholding-based approach
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we pre-define a set of classes in accordance with the previous work carried out in
this area [Peeters and Deruty, 2010, Ricard, 2004b]. An objective evaluation of
our scheme shows that we achieve performance comparable to machine learning
techniques. Moreover, we have the added advantage of control over meaning-
ful parameters such as relative duration and slopes to assist in classification or
filtering for retrieval. The online experiment carried out for the use case of sim-
ilarity search provides evidence for successful application of our technique. As
the results indicate, our system was clearly preferred over the current similarity
search facility in Freesound. Due to time constraints the evaluation could only
be carried out over a small number of participants. To the best of our knowledge
this was one of the first such subjective evaluations and also the first study to
be carried out on a real-world dataset. This framework is not restricted to SFX
and can be generalized to any kind of audio.

In the context of Freesound, an important outcome of this investigation is that
such a categorization can be used as a method for automatically generating
content-based metadata. For instance, a sound could be labeled as ’stable’ and
a simple text search could be used for retrieval. Note that we now have the abil-
ity to retrieve audio based on perceptual attributes from the text search itself.
This might be useful for some systems. However, there are a few limitations of
our current approach. We do not take into account the slope features. As a
result, we lose some information about the attack or decay leading to confusions
primarily within impulsive, decreasing and delta classes. Also, the classification
experiment indicates the need to better define the impulsive class.

With some modifications our approach can be extended to include profiles for
other sound attributes. We briefly discuss one such extension to pitch profiles
which also provides us with first steps towards future work. The pitch profiles
were defined as the temporal evolution of fundamental frequency and classified
into five classes: stable, increasing, decreasing, delta and inverted delta. A similar
modeling approach was followed and class definitions were based on sign of the
slope features S1 and S2. Preliminary experiments threw light on the following
associated issues:

• Due to the introduction of the inverted delta class it is not possible for us
to fix the center knot for B-Spline modeling at tmax. Hence, we set it to
t = 0.5 for all the sounds. This reduces the accuracy of our system

• The FS-SFX dataset contained very few clear examples for each of the
aforementioned pitch profile classes. Moreover most of the dataset is made
up of complex pitch profiles and noisy sounds. This made conducting
evaluation difficult.
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Though the idea of profile classification into broad categories finds use in appli-
cations such as similarity search, it might seem too restrictive in cases where the
user wants to be very specific. It is possible to incorporate such a requirement
through our approach by considering the slope and relative duration parameters.
Also, the thresholds in our approach can be looked at as presets, which can be
modified according to the user’s need.

In the next chapter we shift our focus towards metadata categorization through
latent dirichlet allocation.
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Chapter 4

METADATA CATEGORIZATION
USING LATENT DIRICHLET
ALLOCATION

Having dealt with content in the previous chapter, in this part of the thesis we
cater to the objective of organizing and utilizing tag information. We use a pop-
ular model known as Latent Dirichlet Allocation [Blei et al., 2003] for extracting
and categorizing tag information for each sound in our database in terms of
”topics”. These topics are learnt in an unsupervised manner from the tags at-
tached with each sound. This chapter is dedicated to understanding the relevant
technical details and the intuition behind this technique. Subsequently, in order
to establish the usefulness of this approach we run three evaluation experiments.
The first two are aimed at demonstrating the ability of this method to auto-
matically group together ”similar” words i.e. words/tags coming from the same
”topic”. The last one illustrates the use of this topic based representation in
similarity search.

4.1 Defining the Task

1. Task - Given the tags for each sound in our dataset we wish to discover
the underlying topics and thus obtain a representation of each sound in
terms of the learnt categories.

2. Input (Text) Representation - We choose the vector space represen-
tation also known as the bag-of-words approach where for a dictionary
of N words, each document (in this case sound) is represented as an N-
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dimensional binary feature vector, W = {wi}Ni=1 where wi = 1 if the sound
contains the ith word in the dictionary and 0 otherwise.

3. Output (Topic) Representation The model would output based on the
chosen number of topics, K a feature vector for each sound that captures
the proportion in which any particular topic is present.

4.2 LDA Details

Formally, the latent dirichlet allocation (LDA) is a generative probabilistic graph-
ical framework for modeling the process of the generation of a corpus. The
graphical model is shown in Fig. 4.1. The generative process for each document
in the dataset can be described as follows:

1. Choose θ ∼ Dirichlet(α) - drawing a topic distribution from a uniform
dirichlet distribution with parameter α

2. For each word w:

• Draw a topic zn ∼ Multinomial(θ).

• Choose a word wn from p(wn | zn, β), a probability conditioned on
the topic, zn. Here β is a word-topic probability matrix p(w|z)

Figure 4.1: Latent Dirichlet Allocation - A generative probabilistic model

The central computational problem is that of computing the posterior i.e. the
conditional distribution of the latent variables given the documents. It must
be noted that exact inference is intractable. Various approximate methods like
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gibbs sampling, variational inference and variational EM exist in order to per-
form inference and parameter estimation for LDA. The reader is referred to
[Blei et al., 2003] for a detailed discussion on inference and parameter estima-
tion techniques.

There are two additional advantages of using LDA. The topic representation
works as a dimensionality reduction method where we can obtain a ”higher”
level representation. If looked at from the perspective of matrix decomposition
algorithms, it is a kind of PCA analysis [Blei, 2012]. Moreover, we also discover
the probability with which each word is associated with any particular topic. The
model can be used for both: text-based retrieval of sounds and similarity search
based on tags. In the next section we put this technique to use for determining
the topic structure and also perform similarity search based on topic feature vec-
tors. For all the experiments python package LDA 1.0.2 implementation is used.

4.3 Experimental Results

4.3.1 Datasets

Here, in addition to the FS-SFX dataset, we also use the FS-CLS dataset.
FS-CLS contains 120 sounds in total, equally distributed among the follow-
ing five classes: Soundscapes, Instrument Samples, Speech/Voice, SFX, Music
[Dimitriou, 2014]. The human similarity judgements for each of the sounds were
also obtained in order to evaluate LDA for similarity search.

4.3.2 Experiments

The following experiments are designed to analyze two goals concerned with tag
categorization into topics:

• LDA’s ability to discover ’meaningful’ topics over Freesound datasets (Ex-
periment 1 and 2)

• Evaluating application of topic-vector representation of each sound to sim-
ilarity search (Experiment 3)

1. Topic Extraction - FS-CLS

The aim of this experiment is to illustrate the ability of LDA to discover the
underlying topic structure. It has been carried out as a sanity check for use
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with the kind of data we possess. Since we already know the five classes
which form the FS-CLS dataset namely Soundscapes, Instrument Samples,
Speech/Voice, SFX, Music, we wish to discover them automatically (only
using tags).

Parameters: Number of topics, K = 5, Iterations = 1000

Results

Table 4.1 shows the tags attached with each of the topics extracted by
LDA. Clearly, the 5 ”topics” present in FS-CLS dataset can be extracted.
One must note that LDA requires the number of topics as an input param-
eter. Thus, had K been set to more than five for this dataset, the model
would have further decomposed and similarly, consolidated for a value of
less than five.

Topics Tags

Soundscapes field-recording, soundscape, ambi-
ence, atmos, seoul, wind, korea

Instrument Samples multisample, people, acoustic,
drum, guitar, children, break

Speech/Voice voice, speech, male, noise, man,
talk, deep

SFX ambient, industrial, percussion, fx,
hit, dark, metal

Music loop, beat, drum, melody, pro-
cessed, synth, pad

Table 4.1: LDA topic-word relations for 5 topics

2. Topic Analysis - FS-SFX

Similar to the topic extraction task for the FS-CLS dataset, here we aim
to learn the categories from the sound effects dataset. Since we know that
the sounds belong to the class of sound effects, for each sound we discard
tags such as sfx, effects, sound-effects etc in order to avoid their influence
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on the topic-word matrix because of their frequent occurrence.

Parameters: The results are shown for 20 Topics and 1000 iterations

Results

LDA topic-word relations for FS-SFX - Revised

Topic 0 : noise, glitch, digital, slices, cuts, step, blip
Topic 1: glitch, circuit, bent, bending, electronic, korg, experimental
Topic 2 : acoustic, instrument, mbira, thumb-piano, kalimba,

african, audio-triggered-synth
Topic 3 : synth, analog, synthesizer, bleep, filter, soundesign, bass

Topic 4: digital, noise, crash, reverb, click, downlifter, roomworks
Topic 5: drum, percussion, hit, industrial, field-recording, ambient,
zynaddsubfx
Topic 6: space, dub, reggae, lofi, rasta, siren, jungle
Topic 7 : synth, bass, techno, electronic, loop, electro, dance

Topic 8 : voice, horror, vocal, sound, experimental, noise, human

Topic 9 : ambient, experimental, dark, drone, deep, reverb, pad

Topic 10 : dub, rave, electronic, house, dub-step, club, techno
Topic 11: sci-fi, processed, computer, game, noise, robot, synthetic
Topic 12: sound, sample, synthesiser, 4x4-records, snare,
analogique, j-lee
Topic 13: game, drop, click, plastic, short, fall, water
Topic 14: house, acid, ping, quality, synth, electronic, door
Topic 15 : drum, drums, percussion, acoustic, sound, snare, perc

Topic 16 : hit, hardstyle, stab, electro, house, metal, metallic
Topic 17: kick, virus, ti, beat, distortion, long, sample
Topic 18: digital, sound-design, electric, sci-fi, sounddesign, strange,
noise
Topic 19 : space, alien, sci-fi, futuristic, noise, scifi, gun

• We notice in the box above that the highlighted (in yellow) topics
have been well learnt. In other words, the tags clustered under each
topic are indeed closely related.

• Certain words occur in multiple topics. Though this can certainly
be the case, for us this occurs quite frequently for a few of them. A
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possible reason could be that some words are used in multiple contexts
for the sound effects class.

3. Tag-based Similarity Search - FS-CLS

We consider the problem of performing similarity search using only the
topic representation for sounds in the FS-CLS dataset.

Methodology

For this task we make a comparison between topic and tf-idf representa-
tions. From each representation, a cosine similarity matrix is computed,
referred to as the candidate similarity matrix. For LDA we also compute
the hellinger distance similarity matrix (eqn. 4.1). To check the ’good-
ness’ of these candidate similarity matrices we see how well they conincide
with a reference similarity matrix obtained from human judgments. The
reference similarity matrix is a result of an online experiment conducted
in [Dimitriou, 2014]. In this experiment users were asked to rate similarity
between pairs of sounds on a scale of 0 to 10. Approximately 11500 com-
parisons were obtained [Dimitriou, 2014]. The ratings received for each
pair were averaged to construct the reference similarity matrix.

Logan measure [Berenzweig et al., 2004] is used as the evaluation metric
for comparing candidate and reference similarity matrices. Computation of
this metric is the following two-step process:

• First a Top-N agreement score, si is computed. For this, rows in
both matrices are sorted in decreasing order. Top-N values in the
ith row of each matrix now represent the retrieval results for the ith

query sound. Thus, for each row, the top N ’hits’ from the sorted
reference similarity matrix are exponentially weighed with a factor
αr−1ref depending upon their rank r after sorting. Similarly, for each
sound at rank r in the reference matrix corresponding rank kr is
determined in the sorted candidate matrix and weighed with another
factor, αkr−1can . These values are combined according to eqn 4.1. αref
and αcan are experimental constants that represent the sensitivity to
ordering in reference and candidate similarity matrix respectively.

• The Top-N agreement scores are then normalized with the maximum
and the mean is computed to give the final metric .
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si =
N∑
r=1

(αref )
r−1(αcan)

kr−1 (4.1)

To summarize, we compare the topic based representation with the stan-
dard PCA vector obtained from TF-IDF representation. For LDA we test
with the cosine and hellinger similarity measures. The latter is specific to
finding similarity between probability distributions (eqn.4.2).

document-similarityd,f =
K∑
k=1

(√
θd,k −

√
θf,k

)2
(4.2)

Parameters: Feature Vector Dimension, K = [5, 10], N=5, αref = 0.51/3,
αcan = (αref )

2, LDA Iterations=1500

Results

The results are presented in Table 4.2

• The results are presented for the top 5 hits and feature vector dimen-
sions of 5 and 10. It is evident that LDA based methods outperform
the standard tf-idf approach. The primary advantage of LDA is that
even for very low dimension feature vectors we can expect to get a
better performance than conventional methods.

• For LDA based methods we observe a slight decrease in the logan
metric for K=10. A possible reason for this could be that decompo-
sition into 5 topics is better than that into 10.

Methods K=5 K=10

LDA-Cosine 0.146 0.143

LDA-Hellinger 0.141 0.136

tf-idf-Cosine 0.117 0.129

Table 4.2: Tag-based Similarity Search evaluation for different methods based
on Logan measure
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4.4 Conclusion and Discussion

In this chapter we have dealt with the rationale and intuition behind latent dirich-
let allocation. After an explanation of the basic technical details we show its
applicability to Freesound dataset through three evaluation experiments. In our
similarity search experiment we provide evidence for its superiority over conven-
tional tf-idf approach. LDA proves to be a powerful tool for obtaining automatic
categorization and a low dimensional representation of tag information associ-
ated with each audio file. The representation in terms of topics also helps us
reduce the noise present in tags.

It must be noted that the number of topics must be given as input to LDA. This
parameter should be fine tuned through repeated experimentation to achieve the
right amount of granularity in terms of topics for a given dataset and problem.
The analysis carried out in this thesis must be extended to larger datasets.
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Chapter 5

SUMMARY AND FUTURE
WORK

5.1 Summary and Contributions

Main contributions of this thesis can be summarized as follows:

1. Content Categorization

• We propose a framework for taxonomical organization and thresholding-
based classification of loudness profiles.

• Conducted a subjective evaluation (online experiment) that shows
our system’s superior performance over Freesound’s current similarity
search

2. Metadata Categorization

• Proposed the use of Latent Dirichlet Allocation (LDA), a popular
topic model for tag information representation in the context of Freesound.

• Evaluated use of topic-based feature vectors for audio similarity search.
This gives us promising results, in terms of both, the performance
measure and dimensionality reduction.

In addition, we provide a comprehensive overview of literature on morphological
description taxonomies and content-based audio retrieval systems.

Through this thesis we have contributed to the field of audio retrieval, particularly
in the context of Freesound. The proposed thresholding approach for content
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categorization was successfully built upon the B-spline approximation of profiles
introduced in [Peeters and Deruty, 2010]. The results of our experiments not
only show that the method is comparable to machine learning techniques but
emphasize its flexibility with regard to incorporation of the ”others” class. The
subjective evaluation strengthens evidence for the method’s ability to improve
Freesound similarity search performance. Our preliminary work (described in
Sec. 3.3) shows the extendability of this method to pitch profiles. To the best
of our knowledge this study is the first attempt at morphological description of
a real-world dataset consisting of more than 5000 sounds.

On the front of metadata categorization, contrary to the conventional tag/tf-
idf representation based feature vectors, we propose to use topic models. Their
effectiveness in providing meaningful, high level, low dimensional representation
is illustrated.

5.2 Future Work

We conclude this thesis by presenting future research avenues. For both, con-
tent and metadata categorization we have identified several shortcomings of our
approach. Moreover, our work also opens up several very interesting research
paths. Following is a list of suggested future work for immediately extending and
improving the work carried out in this thesis:

• Develop a similar framework for timbre profile inclusion and also progress
with the pitch profile characterization. Inclusion of features for better
description of classes such as impulsive is essential.

• Incorporating the slope/relative duration descriptors into a web-based ad-
vanced content search facility. Possibly, giving the user control over param-
eters such as the modulation rate, extent and relative duration. A unique
and intuitive way of doing this could be to ask the user to draw the profile.
Relevant parameters can then be extracted from the drawing.

• In the context of Freesound, developing a framework for iterative sound
description would be an important contribution

• Since the LDA based model has shown positive results, next step would
be to integrate these features with the content based features so as to
enhance the current similarity search.

• LDA is a generic model. Evaluating and building several other problem-
specific topic models with larger datasets would prove to be more beneficial
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• Topics can be used as a visualization tool for assisting in retrieval tasks.
This could enrich the user experience.
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