
Voice Quality Modelling with the Wide-Band Harmonic Sinusoidal
Modelling Algorithm

stylianos ioannis mimilakis

MAST ER TH ES I S U P F / 2 0 1 4

MAST ER I N SOUND & MUS IC COMP U T I NG

Master Thesis Supervisor :
Dr. Jordi Bonada

Department of Information & Communication Technologies
Universitat Pompeu Fabra, Barcelona



He with the rough voice...

... performed in LATEX

Stylianos Ioannis Mimilakis : Voice Quality Modelling with the Wide-Band Harmonic Sinusoidal Modelling Algorithm, Barcelona, 2014.



ABST RACT

Modern advances in the areas of speech and voice processing, have underlined the signiVcance
of voice qualities. These qualities, have been proved to provide an increased perceivable natu-
ralness in applications spanning from text to speech synthesis and sound source separation to
singing voice conversions and transformations. As a result, diUerent and multiple approaches
co-exist, with main task to reproduce and transmit these speciVc voice characteristics. In this
work, we aim to model these voice qualities incorporating robust analysis algorithms, alongside
with machine learning tasks. This methodology, allows the extraction and modelling of speciVc
features and patterns, that are enabling the re-synthesis of the phenomena involved during each
voice quality. Then, the extracted patterns are fed into an ensemble of ArtiVcial Neural Networks
training procedure, capable of generalisation and satisfactory performance among restricted au-
dio corpus. Finally, for the Vnal transformation stage each input voice is activating the ArtiVcial
Neural Networks enabling and predicting the re-synthesis of the voice qualities patterns, while
allowing the operation to perform in an adaptive way. The proposed method was also evaluated
through series of subjective listening tests, where a set of singing voices was processed and 8 ex-
perienced listeners had to rate the perceived naturalness, expressivity and transparency of each
audio segment. Results are demonstrating the solid performance, achieving almost adequate, to
original audio corpus, perceived naturalness, while the perceptual expressivity grade was higher
for the transformed audio corpus. As far it concerns the transparency, a mean total success rate
of 47.2% was achieved, during the distinction between original natural voices and transformed
ones.

Keywords : Singing Voice Processing & Modelling, Voice Quality(ies), Wide-Band Harmonic

Sinusoidal Modelling, ArtiVcial Neural Networks
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1
I N T RODUCT ION

Speech signals transmit a wide range of information. Apart from utterances
that are manifesting messages of principal information, an underlying layer of
details is also existent and important in oral communications. This underlying
layer, reveals the speaker identity, which is vital for diUerentiating between
multiple speakers [1].

The perceived characteristics incorporated in the aforementioned layer, are
derived from a variety of of laryngeal and supra-laryngeal features, which are
not unique to one individual speaker, but they are able to form clusters of identi-
Vable voice types [2]. Namely, clusters of modal, breathy, pressed/tensed, creaky,
nasal and harsh/rough voices.

Assuming the above, it is eminent that the reference to voice qualities is
prompting to the deVnition of the eUect, that is being produced by speciVc vo-
cal tract and laryngeal anatomy alongside with speciVc vocal routines. Hence,
these procedures will form the perceivable voice types (modal, breathy, etc.) and
then the types will be the conveyor of perceptual information, enabling the in-
dividual speaker identiVcation or the transmission of emotions [2].

Besides the emotion transmission and speaker identiVcation, these voice styles
are taking place into more artistic areas, such as singing performance. Where
in this context, diUerent music genres were observed to include them as main
medium of expression [3].

Subsequently, by Voice Quality(ies) or VoQ(s) we will be referred to the per-
ceived voice types, that are formed by speciVc vocal anatomy routines, in the
same way as the cited literature.

In order to approach the examination and analysis of the above phenomena,
several methodologies have been proposed. These methodologies, can be classi-
Ved into three major groups [4] :

1. Videoendoscopy methods, using image or video data recordings of the vocal
folds, such as videokymography.
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1 introduction

2. Electroglottography (EGG) methods, using measurements of electrical resis-
tance between two electrodes placed around the neck, through which the vocal
fold contact area can be estimated.

3. Acoustic analysis methods, using audio recordings of the radiated speech sig-
nal to compute parameters related to voice.

By simply comparing the above groups, acoustic analysis seems to overcome
drawbacks that the other two methods are exhibiting. More speciVcally, acous-
tic analysis methods have lower computational and Vnancial cost and are non-
invasive. Moreover, they can generate quantitive results, which can be used for
unsupervised tasks [4].

Presuming the advantages of acoustic analyses, the main goal of this thesis,
is to examine, model and re-synthesise multiple voice qualities utilising robust
analysis / re-synthesis frameworks in conjunction with machine learning modi
operandi. More speciVcally, the proposed methodology avails Wide-Band Har-
monic Sinusoidal Modelling [5], allowing the exploitation of voice qualities pat-
terns, which are used for entraining an ensemble of ArtiVcial Neural Networks.
Thus, enabling an extensive examination and prediction of the occurred phe-
nomena, in the contexts of parameterised re-synthesis. This will overwhelm
the limitations of current approaches, which are exemplar concatenation, scal-
ing and one versus one voice conversion / spectral transformation [6, 7].

The following research work is focusing upon types of rough voices denoted
as growl and creaky, while it achieves the implementation of a robust system
capable of learning and predicting speciVc parameters, that are synthesising
phenomena that can be used for transforming an input voice signal, with a
greater focus on singing voice performances.

In conclusion, the rest of the document is organised as follows: Chapter 2
provides a synopsis of state of the art technologies in the scope of the current
thesis, while Chapter 3 describes the structure of the employed algorithm. In
addition to this, Chapter 4 introduces the reader to the proposed methodology
of analysis and modelling. Chapter 5, describes the followed experimental pro-
cedure, where it’s results are being demonstrated in Chapter 6. Finally, Chapter
7 concludes this document by denoting the future work.
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2
RE SEARCH & T ECHNOLOGY SYNOPS I S

2.1 preface

In this chapter, the main research areas, that this thesis is covering, are being
demonstrated. More speciVcally, state of the art approaches and relevant tech-
nologies, considering analyses, emulation and re-synthesis models, are investi-
gated throughout the following sections.

The Vrst section entitled “Physiological Mechanism”, takes place into the in-
vestigation sphere of physical phenomena , regarding human utterances and
how the establishment of the voice qualities term, took place. Next, “Analy-
sis/Synthesis Model” is concerned with the discipline of archetype, inside digi-
tal signal processing, for the analysis and re-synthesis of voice signals, allowing
a range of applications, spanning from spectral emulations to transformations
and conversions.

Assuming that the Analysis/Synthesis models, have provided feasible solu-
tions to the emulation of the aforementioned phenomena, another area of re-
search is being introduced. More precisely, this Veld is being denoted as “Em-
ulation” and involves the overview of approaches that try resemble parallelism
between diUerent physiological mechanisms. An illustration of the co-existence
and coherence of these diUerent areas, can be previewed in Figure 1.

Finally, industry has also advanced the engines, regarding the processes of
voice analysis, re-synthesis and transformations. As a result, they can not be
neglected from this study and the last section is dedicated to the exploration of
the capabilities of these machineries.

2.2 physiological mechanism

Voice quality variations, as a set of voice modiVcations, have been studied from
the mid 1960’s. Thus, a great gamma of perspectives has been established.
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2 research & technology synopsis

Figure 1: Examined Research Areas & Relationship.

More speciVcally, the Vrst one that brought to light these quality varieties,
was D. Abercrombie in [8], where the alteration in simple phonetics alongside
diUerent utterances and speakers, was examined. The above research, triggered
the interest of relative Velds and as a result in [9], the previous variations were
examined from the physics of human’s larynx system. This examination took
place alongside cross-language subjects. As an outcome, it was the discrimina-
tion of larynx usage in three distinctive procedures.

Focusing on the actual procedures, the Vrst one aUects the fundamental fre-
quency of voicing, by modifying the laryngeal tension. The second, is concerned
with the timing onset of supra-glottal movements, during voicing, for the deter-
mination of pre-voiced and voiceless, (un)/aspirated consonants. Finally, the
third one, which is the separation between arytenoid cartilages, classiVes the
utterances into voicing modes such as breathy, creaky, modal, voiceless, etc [9].

According to [10], the previous classiVcation of voicing modes triggered the
research of these physiological phenomena. These studies spanned from laryn-
goscopical examinations up to analyses of acoustical parameters and properties.
The most signiVcant one, from the part of laryngoscopical examinations, was
done by J.Laver in [11].

Analytically speaking, in [11] the physiological correlation with the above
voicing modes, henceforth described as voice qualities (VoQ), were studied in
terms of muscular tension. Therefore, three distinct parameters of tension were
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2.2 Physiological Mechanism

devised, that can describe each VoQ. Namely, adductive tension(the action of the
inner arytenoid muscles adducting arytenoids),medial compression (the force on
the vocal processes adducting the glottis) and longitudinal tension(the tension of
the vocal folds themselves).

The proposed parameters atop, oUered an analytical explanation of each in-
dividual VoQ. Technically speaking, breathy voice involves minimal laryngeal
tension, while vocal fold vibration is ineXcient and the disunion of vocal folds
is resulting an audible frication noise. Following a similar pattern of excitation,
whispery voice is characterised by low tension of the inner arytenoid muscles
combined with a high medial compression, while laryngeal vibration is once
again very ineXcient.

Moreover, a modal voice can be described as a moderate laryngeal tension,
among with eXcient vocal fold vibration, while the cartilaginous parts of the
glottis are vibrating as a separate single unit. Tense voice, has a higher degree of
tension alongside the vocal tract with the implication of adductive tension and
medial compression [11].

On the other hand, harsh and creaky voices involve high tension settings. With
deVning characteristics be endowed with additional a-periodicities, due to these
high glottal tensions. In addition to this, high medial compression and adduc-
tive, but low longitudinal tension, provide two more distinctive features [11].

An illustration of the diUerent parts involved in human’s voicing mechanism,
denoted alongside the document, is being given in the following Figure 2

Focusing on the latter case of acoustical properties analyses, a key research is
being introduced in [10]. In this article, diUerent voice qualities are complemen-
tary examined among female and male speakers. Main results were diUerences
in potential acoustic cues, between VoQs. These diUerences included a high
increase to the following features of:

1. Relative amplitude of fundamental frequency component, as a proportion
of the period of open glottis is being increased.

2. The amount of aspiration noise, that replaces higher frequency harmonics
as the arytenoids become more separated.

3. Lower formant bandwidths.

4. Complexity of the frequency response, in terms of deviations, which is
associated with the tracheal coupling.
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2 research & technology synopsis

(a) Overview of the Larynx (b) Larynx Front View Entrance

(c) Larynx Back View Entrance

Figure 2: Human Larynx.

Additional observations were, that on average, female voices tend to be more
breathy than male ones. Additionally, a great number of utterances are ending
with a breathy type of vibration among with diplo-phonic irregularities in the
timing of glottal periods.

Finally, these acoustic cues were synthesised, using a common inverse Vlter
approach, for perceptual assessment. This subjective evaluation, showed the
importance of these diUerences, underlining the signiVcance of diplo-phonia
and other related deviations of perfect periodicity, for achieving more natural
sounding synthesis.

Beside the stated voice qualities, laryngoscopic observations in [12], showed
that a renewed deVnition, regarding places and nature of articulation, was emerg-
ing. In essence, that pharyngeal manners of articulation go beyond fricative
approximations and it should be handled as a parallel or accompanying phono-
logical process. Meaning that, from now on a facilitation of a more precise
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2.2 Physiological Mechanism

explanation of phonological system and more detailed description of phonemes,
could be established. This hypothesis was validated through subjective listen-
ing tests, using synthesised audio corpus. More precisely, the subjects denoted
a higher preference rate, for the synthetic audio that was taking into account
pharyngeal features.

These new advances in articulation system, expanded the gamma of diUer-
ent perspectives. As a result, collateral research areas begun to gain interest.
As an example, in [3], a speciVc singing voice technique, which was observed
alongside diUerent music genres, was examined. This technique, was denoted
as growl and the authors in [3], claim that it can easily be perceptually related
with the creaky, harsh, or rough voice.

A throughout investigation in [3], regarding this VoQ, indicated growl as the
main aspect of ethnic music spanning from South Africa to Japan andMongolia[3,
13], as well in diUerent music genres such as jazz, pop and samba.

Moreover, analyses of the actual phenomenon of growl, using video - Wuo-
roscopy and high-speed imaging among with the mapping of it’s acoustical char-
acteristics, are also inquired by the same authors in [3]. The performed analyses
stages encountered high vibration and position of the larynx and aryepiglottic
folds. As a result of aryepiglottic folds vibration, the vocal tract is being given a
unique shape, constricting the larynx tube and then the growl is produced. As
far it concerns the examination of acoustical features of growl, a predomination
of sub-harmonic generation and high oscillation patters was observed through-
out all diUerent singing voice techniques. Meaning that, relation awareness is
crucial between perceptual cognition in diUerent traditions.

These perceptual relations between voice qualities, studied in the literature
covered in this sector, have also provided “fertile soil” for another scope of anal-
yses and estimations. This scope can be discriminated itself into two categories.
The Vrst one including probabilistic estimations for the objective determination
of voice qualities [14, 15], while the other focuses on the cognitive aspects of
emotion and mood [16]. Meaning that having such a series of overlapping re-
search Velds, the emulation of the voice qualities is implicated more and more
into the level of signiVcance and importance. Thus, the following part of Chap-
ter 2 is concerned with the synopsis of methods involved into emulation of these
qualities.
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2.3 emulation

In the previous section, the physiological mechanism was the main subject un-
der examination. Most of the described approaches above, used methods of ar-
tiVcial synthesis for each corresponding VoQ. Therefore, these synthesis tasks
must not be confused with the emulation of phenomenon, since the main task
at this point, is to obtain patterns from diUerent aspects of analysis, that can be
applied to a target voice signal.

In addition to this, the importance of these tasks can be overviewed by the
product of this Veldwork, allowing the unfolding of new scopes of experimen-
tation. Which consequently, provided a diverse range of applications, span-
ning from enhanced emotional speech synthesis [17] up to improved source
separation[18].

Onwards this notion, the Vrst attempt of emulation of such phenomena is
introduced in [19]. The current approach uses a combination of two physical
models, one for vocal fold and another one for vocal tract modelling. The main
reason of the examination of the fusion of these two models, is the rigorously
characterisation and description of each VoQ.

As a matter of fact, area functions, provided from diUerent physiological ex-
aminations, were used to derive a statistical correlation, of observations, using
Principal Component Analysis (PCA). This analysis showed the cross-sectional
activations of diUerent laryngeal parts up to the lips and patterns of deforma-
tions in the vocal tract. Finally, these activations were mapped, according stan-
dard deviations of each component, and tested for their interconnection with
diUerent audio-based recorded VoQs.

This operation, resulted into simple spectral characteristics, such as funda-
mental frequency deviations. During the same utterances a pointed drawback,
was that these models fail to fully reproduce the naturalness of original recorded
VoQs. Still, the enhancement of speech recognition systems was achieved [19].
For more details, regarding both models, the reader is encouraged to inquire
into the previous section and the related article in [19].

Aside from physical modelling methods, prosperous tactics have also been
provided by digital signal processing oriented ones. These methods have over-
come limitations of former ones and clearly, they are setting higher goals. A
simple explanation to this escalation, is the signiVcant contribution of advanced
analysis and synthesis methods, that are fully described in the forthcoming sec-
tion.
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2.3 Emulation

Focusing on the actual emulation strategies, a system that models the char-
acteristics of roughness and growling, in voiced signals, is being presented in
[20]. More speciVcally, the unavailability of real time voice transformations of
time domain (TD) methods, is outlined and a direct approach in the frequency
domain (FD) is being proposed. As a consequence, a procedure of pure sinu-
soidal addition inside spectrum, to sub-harmonic frequency regions and phase
peak shifting with speciVc oUset, reproduces desired down octave transposi-
tions. With the main intention that, these transpositions can assemble the per-
ceptual discrimination of a rough voice.

At this stage it should be stated, that only sub-harmonics inside the range of
estimated fundamental frequency up to 8 kHz bands are admixed to the spec-
trum. An explanation to this, is that higher sub-harmonics are irrelevant, in
terms of perceptual reproduction of the roughness [20]. In addition to this, ob-
servations showed that the magnitude of fundamental frequency masked the
Vrst sub-harmonic.

According to [3], sub-harmonic generation could be easily related with an-
other VoQ, denoted as growl. Consequently, a similar approach is also used for
the growl emulation, in [20]. The main diUerences between rough and growl
emulation, are the speciVc amount of sub-harmonic addition and diUerent peak
phase alignment, due to the existence of individual macro periods, in the case
of growling. For the implementation above, a phase-locked vocoder technique
was used.

The above approach, was revisited in [7]. This time, an exemplar based pro-
cedure takes place, in order to replace the sub-harmonic generation process.
Consequently, a typical phase vocoded implementation was used for spectral
analysis and mapping of the target, modal and source, growl voice signals.

This not only allowed robust growling emulation and re-synthesis, but also a
blistery procedure in situations where no great audio corpus is available [7]. Fi-
nally, the approach was assessed by listening tests, using natural and re-synthesised
growls, in terms of ‘naturalness”, quality and voice expressiveness. Results,
showed a great ambiguity, of experienced listeners, in distinguishing between
real and synthetic growls and an overall good performance alongside the con-
strains of expressiveness and quality.

Inspecting VoQ emulation by a perceptual aspect, an approach of breathy
vowel emulation is proposed in [21]. This method, operates in the FD and tries
to decompose the signal into a periodic and a noise component. This will allow
the modiVcation of the envelope of the noise component, which is a function

9



2 research & technology synopsis

of the glottal Wow waveform and thus, the assessment of diUerent VoQs. The
algorithm for the decomposition used was the one described in [22].

Focusing on the actual study case, breathy vowel was simulated with
Liljencrants-Fant model (SVLN) [23] and analysed using the above decompo-
sition method. Preliminary analysis showed that breathy noise source can be
characterised by strong modulations based on a “gating” function, resulted by
the vocal fold oscillations. Hence, four diUerent patterns of oscillation were
scoped out and assessed by subjective listening tests. At that point synthetic
and recorded vowels were served as input to the proposed system and the sub-
jects had to rate the output, in terms of perceived naturalness.

The assessment results, showed that a DC based oscillation, which is similar
to physiological glottal airWow, was preferred alongside the subjects. Another
interesting fact, was the statement of complexity of breathiness phenomenon
and it’s emulation/modiVcation procedure. Where, in the search of superior
emulation process, more precise and robust analysis / synthesis models should
be taken into account [21].

Onwards this idea, a more robust model was presented in [24], where a FD ap-
proach combined with pre-processing stages, labeled as adaptive pre-emphasis,
enhances the LP operation, yielding better transformed results. The output of
the enhanced LP model, was validated once again with subjective listening ex-
periments, by achieving a well balanced identiVcation rate only for breathiness
emulation and transformation.

Remaining in the scope of perceptual aspects of VoQs, emulations in con-
text of expressiveness projected upon emotional states, were investigated in
[17]. The main goals of that research were two. First, to demonstrate the sig-
niVcant improvement of VoQ emulations combined with prosody modiVcations,
for transforming a neutral to an expressive speech style, in contrary to previous
methods using only prosody adjustments. And the proposal of a methodology
capable of measuring parameters related to diUerent VoQs.

The measuring methodology, yielded a set of useful metrics. More speciVcally,
the following list describes and gives an overview of these metrics.

1. Jitter & Shimmer : Denoting cycle-to-cycle variations of the fundamental
period and waveform amplitude, describing frequency and amplitude mod-
ulation characteristics.

2. Harmonic-to-Noise Ratio (HNR) : Describing the ratio between harmonic
and stochastic components.

10



2.3 Emulation

3. Hammarberg Index : DeVning the diUerence between the maximum energy
in the 0− 2kHz and 2− 5kHz frequency bands.

4. Relative amount of energy : Computing the ratio of energy for frequencies
below and above 1kHz of a voice signal spectrum.

5. Spectral Energy Drop-oU : ReWecting a spectral “tilt” above 1kHz.

At this stage, it should be mentioned that in [27], these metrics were rede-
Vned. Ás a result, mean and standard deviation values were computed for each
recorded audio sample, containing a single VoQ .

As far it concerns the implementation details, a three stage approach takes
place into action. The Vrst stage, uses a harmonic plus noise (HMN) decom-
position based on [25],that operates in the FD. Unfortunately, the previous im-
plementation does not preserve “harmonicity” of the spectral components [17]
and for that reason an optimisation procedure, described in [26], is introduced
implicating the overall computational procedure.

The second stage, is concerned with the emulation of VoQ and the feature
extraction for the prosody prediction. To do so, a data mining system, enti-
tled Case Base Reasoning (CBR), obtains prior and target information for each
phoneme and related VoQ parameters are selected. Finally, the speech transfor-
mation is carried out, based on the results of the HNM analysis / synthesis and
the selected parameters are concatenated on top of each harmonic’s magnitude,
phase and energy contour information.

To this end, the proposed system in [17] was evaluated, in terms of subjec-
tive listening tests, according to preference rate of perceptual emotional parsing
between prosody modiVcations and the combination of VoQ modelling. The
audio corpus used for the emotional VoQ retrieval, was the one presented in
[28], including neutral, happy, sad, etc. recorded samples representing diUerent
correspondent VoQs.

Results, showed that the combination of VoQ characteristics and prosody pa-
rameters, produces a more preferable, by the listeners, stimuli. Moreover, the ad-
ditional emulations of VoQ, improve the perception of all expressive and speech
styles.

On the same tracks of voice expressiveness, a speciVc focus on singing voice
in extreme music genres, was given in [29]. This approach revealed patterns
and characteristics of physiological aspects, among with a feasible strategy of
emulation, for the transformation of neutral voice signals.
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In more detail, user assisted recordings were conducted and each type of
singing voice, that contained a speciVc VoQ, fell into one of these categories:
Distortion, Rattle, Growl, Grunt, Scream.

Then, each individual recording was fed to a robust FD model of analysis and
synthesis, that not only preserves the “harmonicity”, but also allows a great
variety of voice transformations in real time [5]. Afterwards, spectral envelopes
and macro-periodical patterns were collected and used for transforming neutral
voices.

Most of the above researches, have outlined two major contributing factors.
The Vrst one is concerned with the undertaken analysis / synthesis model, aUect-
ing the output signal’s overall quality, while the second one pinpoints the initial
strategy of acquiring and parsing parameters of each VoQ, with main eUect the
perceived naturalness.

Alongside this belief, diUerent approach incorporating voice conversion tech-
niques, is introduced in [30]. Technically speaking, spectral and prosodical pa-
rameters were extracted using a FD method [31] and diUerent voice conversion
algorithms were studied. Namely, weighted codebook mapping, an extension
of it denoted as weighted frame mapping and a Gaussian Mixture Modelling
(GMM) framework, were the three algorithms under investigation.

The three aforementioned algorithms, extracted the information for each spe-
ciVc VoQ from the database in [32] and transformed neutral parallel utterances,
using the extracted prosodical / spectral information. Finally, a series of objec-
tive and subjective evaluation took place. The objective evaluation, was based
on the computation of root-mean squared error (RMSE) of Bark-scaled line spec-
tral frequencies (LSF), between the neutral and converted voice signals. As for
the subjective assessment, listening experiments were held, at which’ the listen-
ers had to identify the perceptual mood(aggressive, cheerful, depressed).

Conclusions of the experimental procedure, whereas GMM andweighted frame
mapping frameworks showed a better response, in terms of RMSE and high
recognition of emotional speech.
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2.4 Analysis / Synthesis Model

2.4 analysis / synthesis model

Throughout the previous section, all of the emulation procedures relied upon
a model, that allowed the analysis, the acquisition of spectral and prosody in-
formation and the Vnal re-synthesis of an utterance. This diUerentiates with
voice source models, which their task is to synthesise voice signals. For that
reason, these two models should be treated separately and not be confused in
conjunction.

As a consequence, the main goal of this section is to provide an overview of
the most relevant models available, escorted by their foundational advantages
and drawbacks. By inspecting the inner mechanism of these models, one could
easily discriminate them into two major categories. The Vrst one is charac-
terised for it’s operation in the time domain (TD) and the second one for taking
place inside the frequency domain (FD).

In addition to this, each one of the below approaches, either in TD or FD, can
also be discriminated as a narrow or wide band procedure, depending on the
temporal resolution they are taking into account for the analysis part. Meaning
that if the analysis window is covering one or two periods of the signal, the
wide-band conditions are met and vice versa. The following Table 1, illustrates
the procedural condition of each model.

The following subsections, are focusing on the description of each model of
the above Table 1, according to the two class discrimination.

2.4.1 Time Domain Mechanisms

By reviewing the TD class of methods, the most widely known is the one de-
scribed in [33, 34]. More speciVcally, it is a variation of a time stretching algo-
rithm, denoted as PSOLA, that specialises into monophonic sounds that can be
characterised by pitch, such as the case of human voice.

This algorithm, Vrst exploits knowledge of the fundamental frequency and
pitch, in order to correctly synchronise time segments, avoiding any discontinu-
ities in pitch. Next, a time-stretched version is being synthesised by overlapping
and adding the synchronised time segments at diUerent time instants [34].

The main drawback of a highly pitch-dependent method, such as the one
described above, is the existence of non-periodic components, like consonants,
which can produce artefacts.
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2 research & technology synopsis

model acron. narrow-band condition wide-band condition

HQSM 7 X

PSOLA 7 X

FD-PSOLA 7 X

LP-PSOLA 7 X

PSHF 7 X

Phase Vocoder,
Sinusoidal Modelling & Spec-
tral Envelope Implementations

X 7

SHIP X 7

STRAIGHT 7 X

WBHSM 7 X

Table 1: Band conditions satisfaction

Onwards improving the performance of the previous PSOLA algorithm, an-
other method in [35], denoted as LP-PSOLA is being presented. This time, the
input voice signal is being Vltered, in order to obtain formant shapes. Then the
voice is being parsed to the typical PSOLA model and the Vltered formants are
summed back again, after the overlapping addition.

Unfortunately, quality degradations were observed of when greater funda-
mental frequency modiVcations were applied. The observation was originally
made by the authors of [36] and an improved model is proposed. This advance,
was based on the encapsulation of LP residual decomposition for each period.
Meaning that, the successful simulation of most relevant glottal source param-
eters could be acquired. In addition to this, more precise modiVcations to the
periodic and non-periodic components could be established[36].

One main disadvantage of all the atop TD models, is that they do not allow
the modiVcation of each individual glottal pulse [5]. A method that allows this
operation, is the one described in [37], which incorporates a Wexible and fast
additive synthesis engine based on Formant Wave Function Synthesis (FOFS).

The method above models the human voice as a combination of impulses,
equivalent to the vocal chords and a set of band-pass Vlters, representing the
characteristics of the vocal tract. However, this approach does not precisely
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2.4 Analysis / Synthesis Model

represent the amplitude spectrum, neither phase alignment is being taken into
account [5, 38].

A crucial factor of all the above TD models, is that they do not allow a great
range of timbral transformations [5]. As a result, FD approaches are emerging
towards the necessity of diversity [39].

2.4.2 Frequency Domain Mechanisms

The successiveness of PSOLA methods encouraged the advances of similar ap-
proaches. As a result, the method in [40](FD-PSOLA), performs almost the same
operation, but in advance, a series of Short Time Fourier Transform (STFT) anal-
ysis takes place atop. Still, the modiVcation of the spectral components becomes
cumbersome, where no peak indication is existent.

Aiming for peak location retrieval to simplify the process, another model is
being presented in [39, 41]. With respect to the technical aspects, this approach
performs a STFT analysis and determines the fundamental frequency by cross-
correlating a compressed version of the magnitude, with a series of comb-Vlters,
corresponding to various pitch candidates. Then, peak selection procedure takes
place in, where given a fundamental frequency at each frame, multiples of fun-
damental frequency are computed, so that spectral envelopes are easily derived.

Using the above method to reconstruct voice signals, yield some undesirable
eUects [39], often described as “phasiness”. This undesirable artefact usually
aUects most frequency-domain techniques and has been linked to the lack of
phase synchronisation [39].

Endeavour onwards better re-synthesis quality, an approach that combines
the advantages of TD and FD models into a single framework, is introduced
in [42]. This method, provides an independent control of each glottal pulse
and Wexible phase/timbre modiVcations. In addition to this, phase alignment
conditions are also met, reducing any artefacts of the re-synthesis procedure.

A latter advance of the above algorithm, is proposed in [5], denoted asWBHSM.
With this approach, a single or double period of the analysed signal is used to
estimate individual harmonic components, allowing higher temporal resolution
with various timbral adjustments, performed in real-time. Another interesting
point is that periodic or even non-periodic components, of voiced utterances,
are solely represented by sinusoids [5].
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Similar to theWBHSMmodel, another approach is presented in [43] indicated
as (HQSM), that tends to enhance the performance of another system entitled
STRAIGHT [44]. As a result, a simpler, more robust and less costly, in terms of
computational resources, model is implemented. The crucial of that implemen-
tation, is the usage of dithering noise to enhance the output re-synthesis per-
ceived quality, allowing a great range of spectral manipulations, even in cases
of extreme modiVcations [43].

Main drawbacks of the aforementioned implementation, are the additive noise
aUecting the amplitude and phase of higher harmonics, thus smearing the yielded
envelope, the denial of control of each individual glottal pulse and the unavail-
ability of a robust real-time implementation [45].

Emphasising the importance of low computational models, an approach that
does not need any information about the fundamental frequency or onsets of
individual glottal pulses is presented in [45]. The algorithm distinguished as
SHIP, uses a phase vocoder implementation and tends to obtain optimal time
shifts, by cross-correlating past input time frames. As a result, it preserves phase
alignment with minimal computational costs. Apart from the phase vocoder
approach for the alignment, the rest of structure is similar with typical SOLA
methods [45].

Finally, limitations of the above model can be observed during the assessment
in [45]. At which’ the SHIP algorithm can not grasp with pitch transpositions
of male voices that exceed the factor of 2, which is a typical procedure of basic
gender alteration (male to female).

2.5 industrial engines

The Vrst chronologically stand-alone application that performed vocal synthe-
sis, based on physiological models and wave guide based vocal tract mode, is
described in [46] (SPASM). In addition to the vocal synthesis, it also allowed
adjustments to produce diUerent VoQs similar to roughness and growling.

Another commercial application, produced by Antares is THROAT [47]. This
implementation, allows the emulation of roughness and growl voices, by sim-
ple modulations Moreover, breathiness is also emulated by controlling variable
frequency noise shaping that is mixed back to input signal.
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One of the most accurate emulations of growling is the one that TC-Helicon,
under the product alias VoicePro [48]. Still, it does not create extreme growl or
rough emulations [29].

Finally, a collaboration with Music Technology Group and Yamaha, yielded a
FD approach, named KaleiVoiceCope, for not only transforming voices in real-
time, but also emulating rough and growl voices. based on the approach in [20].
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2 research & technology synopsis

afterthought

Assuming all the above models, mechanisms andmethodologies, presented along-
side Chapter 2, in conjunction with the outcome of [29], regarding the qualities
of commercial applications, it can been seen that the necessity of a multi prism
research, is emerging. Thereby, the following research produced in this M.Sc.
thesis assumes the following factors for succeeding the joint and overall mod-
elling of voice qualities:

1. Robust Analysis / Synthesis Model, preserving a balance between the con-
dition satisfaction and computational eXciency, for real time applications.

2. Sanction of the diversity of transformation strategies.

3. Better understanding of physiological behaviours, providing preferable em-
ulation strategies.

4. Robust utilisation of the emulation strategies, for achieving precise models,
presuming the advances of machine learning techniques.

5. Quality assured applications, with respect to the music recording, mixing,
and producing community.
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3
WIDE - BAND HARMON IC S I N USO I DAL MODELL I NG

3.1 prologue

In the previous Chapter 2, a synopsis of the state of the art technologies and
current needs were presented. One of the denoted aspects, was the incorpora-
tion of a robust analysis and synthesis model, preserving homogeneity between
computational eXciency and satisfactory inner processing procedure.

For this reason, current work incorporates the WBHSM and this Chapter 3 is
concerned with the description of the algorithm involved. In addition to this,
sub-systems allowing the extensive analysis and re-synthesis strategy are also
taken into account. As a result, the following Sections are concerned with three
major operations, involved during analysis and re-synthesis of an input voice
signal.

More speciVcally, the main structure of the WBHSM algorithm consists three
main steps :

1. Compute Fundamental Frequency

2. Perform Maximally Flat Phase Alignment (MFPA)

3. Perform Sinusoidal Modelling in Wide-Band Conditions

For each one of the above steps, a speciVc section exists for further implemen-
tation details.

3.2 fundamental frequency estimation

The procedure of fundamental frequency estimation has often been in the centre
of attention and a lot of approaches have been presented in the last years. Most
of the proposed methodologies underline the signiVcance of acquiring robust
estimations, in a target range of applications spanning from audio eUects to
music analysis and transcription [50, 51].
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3 wide-band harmonic sinusoidal modelling

Throughout the existing research, a prominent issue of the frequency Wuctu-
ations that even can hop from one musical octave to another one [50] is dis-
cussed. For solving this inherited problem, tasks of validation and processing
stages have been encapsulated during the procedure of computation. One im-
portant factor is that these tasks are prone to alter depending on the input signal
[50, 51].

Since this current work is concerned with human voice signals, the fundamen-
tal frequency estimation is based on a spectral autocorrelation method described
in [51]. More speciVcally, the input audio signal is being down sampled up the
rate of around 11kHz, in order to decrease the computational time. The tech-
nique for downsampling is based on a set of poly-phase Vlters allowing a precise
sample decimation. As a next step, the down sampled signal is being sliced up
to consequent smaller proportions, of length ' 50 ms at a rate of ' 172 frames
per second. Then, each portion is being transformed to the frequency domain
using a Blackman-Harris window, without any intermediate processing such as
zero-padding.

The exported transformation containing the complex - valued spectrum is be-
ing Vltered, in order to provide a multi-resolution spectrum. The Vltering pro-
cedure consists a convolution of each frame with a set of triangular kernels of
variable length, likewise 0Hz length at 0Hz and 72Hz length kernes at bins of
1 kHz and above. Afterwards, from the multi-resolution spectrum the logarith-
mic amplitude values are computed and a smoothing average procedure takes
place. This procedure incorporates variable triangular windows, where at that
moment the windows are having 80Hz length at 0Hz up to 180Hz length at the
frequencies of 700Hz and above.

The above smoothing, is followed by a diUerence function among the loga-
rithmic amplitude spectrum and its smoothed version. At that point, the auto-
correlation function takes place and then it is normalised by its maximum value.
Finally, local maxima, derived from the previous autocorrelation function, are
gathered and fundamental frequency candidates are estimated based on a set
of rules, like minimum value, signiVcant autocorrelation value and between a
desired frequency range. Where, any great frequency Wuctuations and discrim-
ination of voiced and unvoiced parts, are derived from a 2nd order polynomial
and audio content features, such as TD zero-crossing rate, respectively.
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3.3 the maximally flat phase alignment algorithm

Subsequent to the described step, one would may consider the necessity of fun-
damental frequency information. Consequently, it has to be stated that by ex-
amining a simpliVed case of voice production, a set of glottal pulses excites
the vocal tract, at the speciVc frequency. This means that each human voice
utterances, changes the pitch (i.e. the perceptual fundamental frequency), by
modifying the rate which these excitations occur [38].

An observation that gained the attention of many models allowing the trans-
formation of voice signals, was the shape invariance characteristic. This obser-
vation was related to the shape of time-domain waveform signal around each
glottal pulse onset, that tends to be independent of the fundamental frequency,
but it is on the impulsive response of the vocal tract. This means that the trans-
formation in frequency domain, can describe the aforementioned shape in terms
of amplitude, frequency and phase values [38].

Assuming the above, it is undemanding to to comprehend the need of match-
ing between detected onsets and actual glottal pulse onsets, in order to obtain
the best re-synthesis possible. Thus, diUerent practices for detecting glottal on-
sets have been developed. As a matter of fact, these methods are relying on
setting onsets to arbitrary locations or phase characteristics of the source signal.
An approach to estimate glottal pulse onsets, which is undertaken in this work,
is being presented in [38].

More speciVcally, in a constant frame-rate spectral analysis framework, the
harmonic phases that Vt eXciently are collected when, the property of Wat phase
envelope under shifts of each formant in a properly centred window, is met
[38, 42]. Meaning that, when the analysis window is almost cantered to an
actual onset, the harmonics are synchronised and the phase spectrum is nearly
Wat, with remarkable phase shifts for each formant.

Assuming that whenever a slide shift of a window happens, a phase shift
that varies linearly along frequency occurs [38], one path to locate the pulse
onset is to estimate the slope of the aforementioned shift. Hence the described
algorithm is trying to obtain a maximally Wat phase alignment, by minimising
the phase diUerences between harmonics. In practical implementations, phase
unwrapping complicates the estimation, so the following steps should be taken
into account :
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1. Set several arbitrary fundamental phase candidates ϕ̃0, in the interval of
[π,π).

2. For each candidate, apply the corresponding phase shift along harmonic
peaks, derived from the known linear slide shift of the window.

3. Locate the phase of each harmonic ϕ0,h, which will be rotated after the
previous step as ϕ̃0,h = ϕ0,h + 2πfh∆̃t, where ∆̃t denotes the time shift
and fh is the constant frequency of the hth harmonic.

4. Then, compute the sum of rotated phase diUerences as
ϕ̃diff =

∑
|princarg(ϕ̃0,h+1 − ϕ̃0,h)|.

5. After computing the sum of diUerential rotation for each phase candidate,
a function is obtained that is similar to a sinusoid. From this function, the
minimum value sets the desired fundamental phase ϕmin, that approxi-
mately centres the glottal pulse onset [38].

6. Finally, the closest pulse onset tMFPA, which satisVes the maximally Wat
phase alignment, can be estimated according to the central time frame

tframe by : tMFPA = tframe +
princarg(ϕmin−ϕ0,0)

2πf0
.

3.4 the harmonic sinusoidal modelling algorithm

In the previous sections, prior steps to the Harmonic Sinusoidal Model were
previewed. The main theme of the current section is concerned around the
estimation of harmonic components out of a single period of the input signal.
This will allow estimating harmonic parameters, with higher temporal resolu-
tion than typical phase-vocoder and sinusoidal model based methods [5].

In more details, the current algorithm takes one of the detected period and
a windowing function centred to the voice pulse is being applied. The trans-
formation to the frequency domain is being performed using the Fast Fourier
Transform (FFT) implementation of Discrete Fourier Transform (DFT), where
each bin is corresponding to one harmonic and their magnitude and phase in-
formation can be retrieved from :

Mk = |Xk| (1)

Θk = ∠Xk (2)
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where, k = 1, ..., T2 is the vector containing the harmonic series and Xk is the
complex valued spectrum of an input signal x(n), with an estimated period of
T and multiplied by a windowing function. The transformation is based on Eq.
3

Xk =

N−1∑
k=0

x(n)e−j2π
kn
N (3)

The above equation 3 is equal to X(kfsN ), meaning that each bin corresponds
to one harmonic, when the following condition is preserved:

W(
kfs

T
) = 0,∀k ∈ [1, T − 1] (4)

where, W(kfsT ) is the windowing function and the above statement is valid for
N = gT ,g ∈N.

This means that when a window is a multiple of the signal’s period, the intern-
harmonic energy contribution goes to zero [5]. With the main ambition to
achieve widest-band possible conditions, the N = T is used.

In real-world scenarios, the estimated period T may include non integer or
power of two values. As a result, the FFT algorithm will require zero-padding,
in order to match power of sample lengths, but this will modify the complex
spectrum bins in a way that will not correspond to any harmonic components
[5].

For this problem, two main solutions have been proposed in [5]. The Vrst
one includes a processing stage prior to FFT computation, denoted as periodi-
sation, which attempts to Vll the gap of the FFT buUer, by concatenating the
selected segment by a speciVc amount of times derived from period T and then
windowed by a proper function. On the other hand, the second approach which
this work incorporate, is based on an up-sampling method, where the number
of samples matches the closest FFT buUer sizeM using the above Eq. 5

M = 2(blog2(T)c+1) (5)

and only frequency bins up to the value of T2 , are relevant.

So far, only the following procedures have been discussed:
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3 wide-band harmonic sinusoidal modelling

1. Fundamental Frequency Computation

2. Period and Pulse Onset Detection

3. Frequency Domain Analysis in Wide-Band Conditions

What is still missing, are the parts of input signal re-synthesis and the under-
lining feasible strategies, regarding signal transformations using the described
model. As far it concerns the re-synthesis, It is possible to use an equivalent
to analysis method, where for each frame the Inverse Fast Fourier Transform
(IFFT) is being computed. Extra care should be given at the recovered TD sig-
nal, where it has to be down-sampled to the analysis frame rate and overlapped
with the other re-synthesised periods, to the exact onset sequence. In addition
to this, the phase is being recovered using a minimum phase Vlter, derived from
cepstrum, along with stochastic deviations between similar consecutive voice
pulses.

As far it concerns the transformations, we can discriminate them into two
major types. The Vrst one related to the period onset sequence and a latter
one related to each individual period [5]. Assuming the statements in Chapter
2, this can be related to the typical source-Vlter voice approach of modelling
human voice, with the former class of transformations associated with voice
source and the latter with the vocal tract.

This allows combining the operations of TD combined with the diversity of
procedures performed in the FD. In addition to this, controlling each pulse onset
is enabling a more extensive transformation operation, by simply adjusting or
equalising amplitude and phase values. This means that several voice disorders
and voice types, that are characterised in the excitation glottal pulse sequence,
can be analysed and re-synthesised along time [42].
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4.1 prologue

In the previous Chapter 3 the structure of the analysis and re-synthesis was in-
spected. The aforementioned Wexibilities that this model allows us, regarding
the examination of diUerent voice qualities, will be employed with main ambi-
tion to create generalised voice qualities models that are allowing the emulation
and re-synthesis of each voice quality.

In the following Figure 3, the proposed methodology for analysing, modelling
and transforming voice is being demonstrated.

Figure 3: Proposed Modelling Architecture.

Audio recordings containing diUerent VoQ(s) are imported to the framework
of WBHSM. The extracted values for each pulse onset, henceforth called voice
pulse, are sent to the pre-deVned module “Analyses”, which tends to extract
patterns that are describing each VoQ.
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4 analysis & modelling

Then, speciVc features and time marks, that denote time stamps of of each
occurred phenomena inside a VoQ, are used as input variables to a set of mul-
tiple ArtiVcial Neural Networks (ANNs), denoted as ANN Ensemble. As far it
concerns the output vectors, that are used as target values for prediction, the
extracted parameters from the “Analyses” are being set as target. Finally, for
each modal voice that is being fed as input to the system, the procedural chain
goes as follows:

1. WBHSM Analysis

2. Audio Feature Extraction

3. Feature Prediction

4. VoQ Synthesis, based on the atop predicted features

5. Transformation of each Voice Pulse, according to synthesised VoQ

6. WBHSM Synthesis

yielding the desired transformed modal voice containing the analogous VoQ.

From a general perspective, the whole procedure can be categorised into three
main three courses of action. Namely, Analysis, Training & Synthesis Formula-
tion.

At this point, it has to be mentioned that for every VoQ, the inner procedures
vary for each one of the three actions, but the structure remains the same. As a
result, the following sections will describe each action for every analysed VoQ.
For the moment, this work covers only growl type voices, which are discussed
below.
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4.2 Growl Voices

4.2 growl voices

4.2.1 DeVnition

In contrast to modal voices, which tend to exploit relatively stable harmonic
time series and low energy level, growl voices can be described by rapid changes
of timbre, timing and energy of source excitation events [7]. These changes
result into appearance of sub-harmonics in the spectrum [20] and oscillations
patterns in the time domain [7]. The following Figure 4, demonstrates these
oscillations of the Vrst three harmonics, for initial voice pulses after performing
the WBHSM analysis to a representative growl utterance.

(a) Amplitude oscillations

(b) Phase oscillations

Figure 4: Oscillations derived from WBHSM
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4.2.2 Oscillation Modelling

Observing the above Vgure, speciVc periodic patterns of oscillations can be eas-
ily derived. In addition to this, there are small voice pulse shifts (delay), re-
garding each harmonic. Thus, the main goal should be modelling these speciVc
qualities that are describing the growl voice.

To do so, diUerent approaches could be considered. The most straightforward
ones, are voice conversion and spectral morphing based ones, described in [6, 7]
respectively. While none of these methods exploit voice qualities characteris-
tics, it is convenient to model the described oscillations with sinusoids, from
extracting features of the cepstrum or modulation spectra.

To do so, let us Vrst deVne X(m,k) as complex valued spectrum acquired
from WBHSM, with magnitude M(m,k) = |X(m,k)| and phase Θ(m,k) =

∠X(m,k), wherem,k denote harmonic bins and voice pulses respectively. As-
suming that a modal voice can be characterised by stable harmonic series and
low level noise energy [7], to obtain the residual part containing the oscil-
lation patterns, we smooth M(m,k) with an moving average Vlter yielding
M(m,k)harm. The residual part is recovered by :

M(m,k)res =M(m,k) −M(m,k)harm (6)

Then for each one of the harmonic index inM(m,k)res and Θ(m,k) we per-
form STFT analysis :

M(k)res =M(k)resw(k) (7)

M(k)osc =

N−1∑
k=0

M(k)e−j2π
kn
N (8)

where, w(k) is the analysis window of length N derived by the desired num-
ber of voice pulses. Finally we deVne its magnitude and phase content as :

Osc(k)mag = |M(k)osc| (9)

Osc(k)phase = ∠M(k)osc (10)

28



4.2 Growl Voices

As for the actual frequency values, they are computed by solving a 2nd order
polynomial function, with its coeXcients Vtting max

Osc(k)mag6N
2
. Moreover, it

is vital to inherit the phase error of the above computation by:

DOSCphase(k) = Osc(k)phase − error (11)

error = mod (Osc(k)phase − phprp(k) + π, 2π) − π (12)

phprp(k) =
Osc(k)phase − 2πf

N+
∑
2π f

ws

, ∀f ∈ < (13)

where, f is a value derived from the 2nd order polynomial solution, contained
in an arbitrary vector of frequencies F(m,k).

And the oscillations for each harmonicm can be re-synthesised by the follow-
ing formula :

Osc(m,k) = cos(2π
N∑
k=1

Osc(m,k)magF(m,k) +DOSCphase(m,k)) (14)

which is valid for both magnitude and phase information. At this stage, it has
to be stated that since Eq. 14 uses also the index m, that denotes the harmonic
series, it is straightforward to iterate the above equations for each harmonic bin
m, with respect to voice pulse k, as described.

Finally, a second observation from the above Figure 4, is a speciVc repetitive
pattern of delay in voice pulses, regarding each harmonic. Thus, in addition
to the oscillation pattern we also compute the delay Del(k) between harmonic
series by a simple autocorrelation function. By Vltering the Eq. 14 with Del(k),
we achieve to the desired emulated oscillation.
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4.2.3 ANN Entrainment

Apart from the methods incorporating direct transformations based on FD infor-
mation, probabilistic approaches also do co-exist. In the latter case, an “acoustic
domain” is being deVned by features such as spectral envelope [1], which later
are being Vtted to a statistical model.

State of the art models for the described task are, Hidden Markov Models
(HMM) and Gaussian Mixture Models (GMM). Unfortunately both of the de-
scribed procedures are encountering problems in converging to a solution, be-
cause of restricted training data set [52]. On the other hand, GMM tend to
over-Vt, in the training procedure, or require over-smoothing of the imported
data [53].

To this end, ArtiVcial Neural Networks have been proved to perform as good
as the above methods, overcoming the described problems [54]. Moreover, as-
suming that we are constrained with multidimensional data, regarding m har-
monic series and k voice pulses for three parametersDOSCphase(m,k), F(m,k)
and Osc(m,k)mag describing magnitudeM(m,k)res and phase Θ(m,k) oscil-
lations, two approaches have been proposed.

The Vrst one, encapsulates radial basis functions, in order to converge to an
optimal solution [55]. A reported issue of these functions is the ill-conditioned
or dense output matrix, which collocates the output variables, meaning that
in our intention to predict the time series evolution of each parameter control-
ling the oscillation synthesis formula, the time evolution of the growl will be
smeared.

Aiming for the most well-Vtted scenario of VoQ modelling, where the time
evolution can enrich the perceived naturalness and describe best the actual phe-
nomena, we introduce the a set of ANNs, denoted as ANN ensemble, which is
based on the approach described in [56]. The general idea is to acquire a gener-
alised model that can actually predict the time evolution of the parameters de-
pending on a minimum amount of input values, without smearing the initial in-
formation. As a result, 8 ANNs were trained for predicting the aforementioned
parameters (magnitude and phase oscillation frequency(rate), amplitude(width),
phase and harmonic group delay ).
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4.3 Creaky Voices

4.3 creaky voices

4.3.1 DeVnition & Methodology

Creaky voice is a another type of rough voices, which normally can be mani-
fested among with local and less occurrent irregularities [11]. Perceptually from
a transmission, the listener can actually perceive the separate vocal fold vibra-
tions, with main characteristics such as short boosts and abrupt changes in am-
plitude and frequency [10].

(a) Amplitude oscillations

(b) Phase oscillations

Figure 5: Oscillations derived from WBHSM
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These type of voices are produced by thick, less distance separated vocal cords,
or when the folds above the vocal cords grasp the activated vocal cords and
dampening a portion of the vocal cord vibration [10, 11]. Moreover, in [10]
short glottal pulses occurring at low fundamental frequencies and combined
with a “double-periodicity” phenomena, caused by diplophonic irregularities in
the fundamental period, were reported.

Analysing such a voice using the described methodologies ofWBHSM, we can
deVne an acoustic feature space containing magnitude and phase information,
throughout useful frames that merge to voice pulses. An illustration can be
previewed in Figure 5.

The illustration above, demonstrates the aforementioned phenomena derived
of such an analysis upon a recorded voice utterance. Again, the most represen-
tative voice pulses and harmonics are being presented.

As it can been seen, the most prominent eUects are the magnitude and phase
oscillations, which this time have a ceased eUect across the voice pulses and
most of the peaks are synchronised. Meaning that, only at the beginning of the
utterance a critical pattern occurs, which is being "smoothed" along time and
delay pattern computations will be insigniVcant at the next stage of transforma-
tion.

The last statement, can be exploited by two methodologies. The Vrst one is
to manipulate the oscillation width, rate and phase parameters of the entrained
growl ANN model, in order to achieve the desired output oscillation pattern.
Simply, by linearly decreasing the oscillation width and interpolating the ade-
quate rate, while neglecting the group delay information, almost perceptually
similar eUects can be achieved.

Aiming for natural transformations and phenomenal replication and since the
analysis part has to be done once and ANN’s are covering the part of prediction,
a second strategy was followed. which is the same of analysis, parameterisation
and learning of growl voices. This strategy includes the following routine :

1. DeVne an audio corpus including creaky voices’ utterances.

2. For each recorded Vle, perform the WBHSM.

3. DeVne the desired number of harmonics for analyses for magnitude and
phase information.

4. For each harmonic follow Equations [6− 13].
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4.3 Creaky Voices

5. Re-synthesise the oscillations using Equation [14].

Moreover in [10], it is claimed that there is a probability of higher harmonic
energy increase, due to narrow glottal pulses at the speciVc period, when the
upper folds are dampening active vocal cords, resulting into a relatively Wat
spectrum with speciVc steepness in terms of spectral tilt [10]. By analysing
the “in-house” sub-data set containing creaky voices, such phenomena were not
observed. Assuming the above probability of existence, we also have considered
adding such a feature that will allow the boosting of higher harmonics, which
will be applied after the synthesis and application of oscillation parameters. The
next subsection, is concerned with the overview of the method followed for
boosting speciVc spectral regions.

4.3.2 Spectral Harmonic Enhancement

The following operation can be described as a high shelving equaliser, that can
be found in typical spectral processors, with variable frequency. The reason
for embedding variable frequency inside the procedure is that all human voice
utterances are characterised by speciVc regions in the magnitude spectrum con-
taining useful information [58]. This information is very important and sensible
in human perception and is consisted by speaker dependent spectral slopes and
shapes [58].

For describing such spectral shapes diUerent approaches exist. The most con-
venient with extra care given to emotional features of humans voice is being
presented in [58]. The selection of this approach, was based on the correlation
and overlapping spectral information handling between emotional speech and
VoQs. Moreover, speaker dependent analysis based on fundamental frequency
has been proven to perform better [58].

It has to be stated, that for this task we are focusing on the results of the
aforementioned research, regarding the selection of the “convenient” position
in spectrum, henceforth called “pivot”, in order to perform our equalisation in-
stead of estimating or extracting features proposed by [58]. Where in wide-band
conditions, is even more simple, assuming that each harmonic is allocated one
spectral bin.

Towards this notion, the aim is to localise a speciVc pivot which splits the
spectrum into two parts that contain major information. More speciVcally, the
Vrst and lower part of the spectrum information related to phonetics enabling
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4 analysis & modelling

the characterisation of diUerent vowels, whereas the second part conveys in-
formation about VoQs [58]. As far it concerns the location, it is based on the
selection of a multiple of fundamental frequency. Results in [58], showed that
the usage of 10th harmonic will practically enforce this separation.

After partitioning these two spectrum components, the user can boost the
second part of the spectrum, which contains the higher harmonics, up to a de-
sired value in dB scale, which will not exceed the lower behalf. Finally, it should
be mentioned that this operation is being implemented after the oscillation re-
synthesis, derived from Equation [14].
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5
EX P ER IMEN TAL P ROCEDURE

5.1 description

In this Chapter 5, two main objects are discussed. The Vrst one is related to
the validation of the above, proposed methodology described in Chapter 4, pro-
viding information for the utilised audio corpus, analyses and re-synthesis pa-
rameters and of course the structure of the ANN ensemble, for each VoQ. The
last one, is concerned with a user-based evaluation by conducting listening tests
where, subjects have to rate a set of processed, by the proposed method, singing
voices.

5.2 performance assessment

5.2.1 The Growl Audio Corpus

In order to assess the performance of our proposed methodology, a sub-data set
of 14 “in-house” growl recordings was deVned. This set, contained a variety of
growl utterances, by a speciVc male singer, dissimilar in time length and pitch.

Then, each one recording was analysed with the WBHSM algorithm and oscil-
lation features were extracted. Finally, these features were fed into target obser-
vations of 8 ANNs. The number of harmonic seriesm was set to 45, according
to the practical observations of the signiVcant energy Wuctuation throughout
the audio corpus.

As far it concerns the input values, the fundamental frequency of the voice
utterances and the manually annotated time stamps, describing the length and
the start/ending points of the utterance, were used.

Focusing on the ANN structure, three main categories of Feed-Forward Neural
Networks were used among the 8 individual ones. More speciVcally, for the
oscillation width and rate “Category A”’ was used, while phase incorporates
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5 experimental procedure

“Category B” and harmonic delay patterns employ “Category C”, as illustrated
in the following Figure 6 with the corresponding parameters in Table 2.

(a) Category A

(b) Category B

(c) Category C

Figure 6: ANN Categories Used

Table 2: ANN Parameters

Derivative Function Static Derivative

Data Division Random

Learning Function Levenberg-Marquardt back-propagation

Performance Function MSE

Error Normalisation Active

Number of Layers 2

Number of Layers 2

Number of neurons Variable (see Figure 6)

Initialisation Function Layer-by-layer network initialisation
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5.2 Performance Assessment

After the successful entrainment, each imported voice signal is analysed with
WBHSM algorithm, the user selects time segments for the voice transformation
and fundamental frequency values alongside with an arbitrary time stamp is
activating each one of the 8 artiVcial networks, that are predicting the time
evolution of the modelled parameters. Then, the predicted values are being
given to the synthesis formula Eq. 14, Vltered by the predicted time delay and
simply added to the harmonic amplitude and phase information. Finally, the
transformed voice is being recovered into TD, using the re-synthesis part of the
WBHSM algorithm. An illustration of the transformation procedure is being
given in Figure 7.

Figure 7: Transformation Stage

For validating the above procedure two female and two male singing voice
excerpts, were processed by the described system 1. The voice transformation
was applied to selected voiced regions, marked with red colour in the following
Figures, where their corresponding time domain signal representations among
the predicted oscillations are being demonstrated below.

1 An audio demonstration, using these excerpts, will be given in the presentation
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(a) Time Domain Signal

(b) Predicted Amplitude & Phase Oscillations of 25 out of 45 AUected Harmonics

Figure 8: Female A Excerpt
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5.2 Performance Assessment

(a) Time Domain Signal

(b) Predicted Amplitude & Phase Oscillations of 25 out of 45 AUected Harmonics

(c) Predicted Amplitude & Phase Oscillations of 25 out of 45 AUected Harmonics

Figure 9: Female B Excerpt
39



5 experimental procedure

(a) Time Domain Signal

(b) Predicted Amplitude & Phase Oscillations of 25 out of 45 AUected Harmonics

Figure 10: Male A Excerpt
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5.2 Performance Assessment

(a) Time Domain Signal

(b) Amplitude & Phase Oscillations of 25 out of 45 AUected Harmonics

Figure 11: Male B Excerpt
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5.2.2 The Creaky Audio Corpus

Another sub-data set of 10 “in-house” recordings containing creaky voices was
deVned. Similarly to the growl one, it contained a variety of creaky voice utter-
ances, by a speciVc male singer, dissimilar in time length and pitch.

Each one recording was analysed with the WBHSM algorithm and the afore-
mentioned oscillation features were extracted. Finally, these features were fed
into target observations of 6 ANNs. The number of harmonic seriesm was set
to 45, for preserving a homogenous module for the whole system.

Once again the input values, were the fundamental frequency of the voice ut-
terances and the manually annotated time stamps, describing the length and the
start/ending points of the utterance. Finally, the same structure of ANN’s was
incorporated, with the only diUerence that ‘Category C” was not used, for this
speciVc routine, as illustrated in the following Figure 12 with the corresponding
parameters in Table 3.

(a) Category A

(b) Category B

Figure 12: ANN Categories ussed for creaky voices
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Table 3: ANN Parameters ussed for creaky voices

Derivative Function Static Derivative

Data Division Random

Learning Function Levenberg-Marquardt back-propagation

Performance Function MSE

Error Normalisation Active

Number of Layers 2

Number of Layers 2

Number of neurons Variable (see Figure 12)

Initialisation Function Layer-by-layer network initialisation

After the successful entrainment, the same approach as growl voices is fol-
lowed, demonstrated in Figure 7. At this stage, it has to be stated that the Group
delay procedure is being neglected from this strategy.

For validating the followed strategy two male modal voice excerpts, were pro-
cessed by the described system. The main reason behind the usage of modal
voices, is that creaky voices represent mainly voice disorders that are not fre-
quently observed into singing voice styles or in the case that they are existent,
no modal excerpt is available for performing the comparison.

The following Vgures demonstrate the predicted oscillations, as an outcome of
the ANN ensemble entrained with creaky audio corpus. As an input, two male
voice excerpts were used and the same routine as growl voices was performed.
It has to be stated, that only 25 out of 45 aUected harmonics are being displayed
for providing a more coherent overview.
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(a) Time Domain Signal

(b) Predicted Magnitude Oscillations

(c) Predicted Phase Oscillations

Figure 13: Male A Excerpt
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5.2 Performance Assessment

(a) Time Domain Signal

(b) Predicted Magnitude Oscillations

(c) Predicted Phase Oscillations

Figure 14: Male B Excerpt
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5.3 subjective evaluation

As a Vnal stage of evaluation, a series of listening tests is programmed to be
performed. For this task singers and musicians that are involved professionally
into the recording, mixing and producing stages will be considered.

In addition to this, a Graphical User Interface (GUI) in Matlab [57] has been
developed to carry out the experimental procedure. Each user shall listen to
a “pseudo-random” sequence, including the original and the transformed voice
excerpt, while the users shall rate the perceived naturalness and expressivity of
each excerpt. The overview of the developed GUI is being given in Figure 15.

Figure 15: Subjective Assessment GUI

As for the actual listening tests, 8 audio professionals, with background in
audio mixing, production and of course familiar with singing voice styles in-
corporating growl, etc., were selected with main task to rate each excerpt. The
rating was based on perceived “Expressivity”, in case of multitrack processed
corpus, and perceived “Naturalness” plus denoting if they believed that the ex-
cerpt contained a synthesised or natural VoQ, in case of singing voice excerpts.

Thus, the listening tests can be divided into two categories. In the Vrst one,
where the growl transformations are included, the approach of evaluation is
based on the perceived “expressivity”, evaluated through processed multitrack
audio sessions, and on perceived “naturalness”, evaluated through small singing
voice excerpts. The latter category, contains the creaky voice transformations
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5.3 Subjective Evaluation

and the selected approach of evaluation is the comparison of natural and syn-
thesised, by the system, voices, where the user has to denote the natural and the
synthetic one.

The main reason behind such an approach, is the initial motivation to evaluate
the system in such cases where not only quality matters, but also as satisfactory
performance in an production chain, since growl voices are being denoted in
popular music genres. On the other hand, creaky voices have a more contained
impact, regarding their occurrence and availability in music scene or recordings.

The apparatus used in this experiment can be previewed in Table 4. As far it
concerns the stimuli, 4 singing voice excerpts and 2 well-known songs’ multi
tracks were processed by the proposed system, using the growl trained module
and 4 other modal voices processed using the creaky trained module.

Table 4: Experimental Audio Apparatus

Electroacoustic Device AudioTechnica ATH-M40FS Studio Headphones

ADC Converter Native Instruments Komplete Audio 6

Playback Software MATLAB [57]

Relevant Hardware Apple MacBook Pro i7 2.66 GHz 15"

Relevant Software OSX 10.9.4, CoreAudio

The algorithm followed, for the subjective assessment, is described in the fol-
lowing steps :

1. Each subject was exposed to the aforementioned GUI after a brief explana-
tion of the procedure and the goals of this operation.

2. A desired sound pressure level was set, by modifying level parameters of
the apparatus in Table 4.

3. The short-length singing voice excerpts were loaded and the subject pressed
“Play” at the desired time instance.

4. By pressing “Play” automatically, the audio samples were normalised and
pseudo-randomly placed in an order.

5. After the stimuli, the user can listen that sequence, as many times as de-
sired.
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6. Upon arbitrary decision, the subject evaluates the perceived “Naturalness”
of each segment.

7. Then, it has to be denoted, if the utterance, containing each VoQ was syn-
thetic or natural.

8. Up until all short-length excepts are over repeat the steps above.

9. Else, load the samples containing the processed multitrack mixes.

10. This time, the subject rates only the perceived “Expressivity”.

11. In case creaky voices are evaluated, the subject rates if he perceived a “Nat-
ural” or “Synthetic” VoQ.
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EX P ER IMEN TAL RE SU LT S & D I SCUS S ION

As far it concerns the results of the subjective assessment ,that encapsulated
a series of listening tests with audio professionals, the following Figures 16
- 18, demonstrate the performance of the proposed system. More speciVcally,
the three-way assessment (perceived naturalness, expressivity and distinction/-
transparency) aims to explore the equilibrium between “beneVts” and “pitfalls”.
In other words, it denotes the trade-oU of what perceptual characteristic you
have to sacriVce in order to gain another one. The third dimension of assess-
ment, evaluates the system in terms of transparency, embedding a VoQ that is
being widely used in emotion speech recognition or TTS tasks.

At this point it has to be stated that a grade of 10 means that perceptually an
excerpt sounds natural and 1 purely “synthetic” or un-natural. While the same
grading system was followed for expressivity purposes.

Figure 16: Perceptual Naturalness Grade
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Focusing on the actual results and the constrain of perceived naturalness, in
terms of how “artiVcial” or “synthetic” this operation may sound, the trans-
formed audio corpus achieved almost adequate median grade (8) to the original
/ non-transformed audio corpus (8.1). In addition to this, “Tukey box-whisker”
diagrams also demonstrate the outlier grades that the original audio received,
which are denoted with red asterisks. This can be interpreted as a disagreement
between the subjects, where not always the original audio can provide an ar-
bitrary perceptual naturalness. On the other hand, the “compactness” of the
transformed audio corpus box-plot, shows that most of the subjects agree on a
less diverse span of the aforementioned perceptual grade, but still high enough
to compete the former one.

By sacriVcing a small proportion of perceived naturalness, it was observed
that the perceptual expressivity, in terms of singing voice performance, can sig-
niVcantly be increased, using the aforementioned procedure. The following Fig-
ure 17 demonstrates the aforementioned increase, where even in the outliers an
increase of 0.3 was achieved. The interesting fact is that the increment grows
for the median values, achieving a divergence of 1.4 between original and trans-
formed audio excerpts.

Figure 17: Perceptual Expressivity Grade
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When it came for the subjects to distinct which could be the transformed
or “synthetic” audio excerpt, using the creaky based transformed examples, the
success rate of denoting the original recordings is up to 50%. On the other
hand, ≈ 55.5 %, of the transformed audio corpus was classiVed as natural or
non-synthetic audio excerpt.

Figure 18: Perceptual Expressivity Grade

Finally, it has to be stated that the above results were achieved using the
default values of re-synthesis and transformation, which were the same for all
audio excerpts. Thus, it is highly prominent that speciVc parameterisation can
yield even better results.
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7
CONCLUS IONS & F U T U RE WORK

In this work, a system capable of generating and adapting transformation pa-
rameters used in voice processing was presented. BrieWy, it combines diUerent
modules that are responsible for speciVc tasks such as, robust voice analysis
and re-synthesis (namely, Wide-Band Harmonic Sinusoidal Modelling), voice
pattern/feature analysis and extraction, “learning” incorporating ArtiVcial Neu-
ral Networks ensembles and last but not least predictive voice transformations
based on the activation of Neural Networks. The whole procedure stands for
modelling and synthesising diUerent phenomena, occurring to diUerent voice
qualities, that allow the transformation of input voices.

In addition to this, the proposed method overcomes drawbacks and limita-
tions of previous approaches and also performs with the least amount of prior
knowledge of an input signal (fundamental frequency and arbitrary desired time
length of transformation) or audio-corpus restrictions. Moreover, we exploit a
deeper analysis of these phenomena which enables intelligent and adaptive pro-
cessing stages, meaning that can be incorporated in any adaptive/intelligent
digital audio processing module [59, 60].

Listening tests evaluating the performance of the proposed system, showed
that the transformations yield perceptually enhanced expressivity, in terms of a
singing voice performance, without risking any critical loss of the perceived nat-
uralness, as a whole operation. In addition to this, when it comes to distinction
tasks, regarding transformation of modal voice excepts, the perceptual audible
transparency is high enough for “synthetic” audio examples to smoothly blend
with natural ones.

Finally, future work could be focused towards these extensions :

• Automated selection of the time instance, where a VoQ should transform
the input voice.

• Assuming the above, it can also incorporate MIR tasks not only the time
instance selection, but also for sophisticated parameters that control the
oscillation re-syntheses.
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7 conclusions & future work

• Examining spectral deviations from voice pulse to voice pulse (combining
harmonic and time series prediction).

• Extending the analysis to adapt diUerent VoQs that are not “time-dependent”,
using diUerent representations.

• Integrating the entrainment part into pattern recognition or classiVcation
tasks.

• Embedding it into various voice eUect processors accompanying harmoni-
sation ones, as it was lately observed into new pop/rock productions.
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