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Abstract

Sampling can be described as the reuse of a fragment of another artist’s recording in a
new musical work. This project aims at developing an algorithm that, given a database
of candidate recordings, can detect samples of these in a given query. The problem
of sample identification as a music information retrieval task has not been addressed
before, it is therefore first defined and situated in the broader context of sampling as
a musical phenomenon. The most relevant research to date is brought together and
critically reviewed in terms of the requirements that a sample recognition system must
meet. The assembly of a ground truth database for evaluation was also part of the work
and restricted to hip hop songs, the first and most famous genre to be built on samples.
Techniques from audio fingerprinting, remix recognition and cover detection, amongst
other research, were used to build a number of systems investigating different strategies
for sample recognition. The systems were evaluated using the ground truth database
and their performance is discussed in terms of the retrieved items to identify the main
challenges for future work. The results are promising, given the novelty of the task.
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Chapter 1

Introduction

Sampling, as a creative tool in composition and music production, can be described as
the reuse of a fragment of another artist’s recording in a new work. The practice of
digital sampling has been ongoing for well over two decades, and has become widespread
amongst mainstream artists and genres, including pop and rock [7, 8]. Indeed, at the
time of writing, the top two best selling albums as listed by the Billboard Album top 200
contain 8 and 21 credited samples, respectively1 [9, 10, 11], and the third has already
been sampled twice. However, in the Music Information Retrieval community, the topic
of automatic sample recognition seems to be largely unaddressed [12, 13].

This project aims at developing an algorithm that can detect when one song in a music
collection samples a part of another. An application of this that may be first thought of
is the detection of copyright infringements. However, there are several other motivations
behind this goal. A number of these are explained in section 1.1.

Even though cases of sampling can be found in several musical genres, this thesis will
restrict to the genre of hip hop, to narrow down the problem and because hip hop as a
musical genre would not exist as such without the notion of sampling. A historical and
musicological context of sampling is given in section 1.2. Section 1.3 outlines the research
and how it is reported on in the remainder of this document.

1.1 Motivation

A first motivation originates in the belief that the musicological study of popular music
would be incomplete without the study of samples and their origins. Sample recognition
provides a direct insight into the inspirations and musical resources of an artist, and reveals
some details about his or her composition methods and choices made in the production.

1Game - The R.E.D. Album and Jay-Z & Kanye West - Watch The Throne (www.billboard.com/
charts/billboard-200).

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1 shows a diagram of sample relations between some of the artists appearing in
the music collection that will be used for the evaluation part of this thesis (Chapter 3).
The selection contains mostly artists that are generally well represented in the collection.
The darker elements are sampled artists, the lighter elements are the artists that sampled
them. The diagram shows how the sample links between artists quickly give rise to a
complex network of influence relations.

Figure 1.1: Network representation of a part of the music collection established for the
evaluation methodology of this thesis. The darker elements are sampled artists, the lighter
elements are the artists that sampled them.

However, samples also hold valuable information on the level of musical genres and com-
munities, revealing influences and dependence. An example of this are researchers who
have studied the way hip hop has often sampled 60’s and 70’s African-American artists,
paying homage to the strong roots of black American music [7] and has often referred to
icons of the African-American identity consciousness of the 1970’s, for example by sam-
pling soundtracks of so-called blaxploitation films, a genre of low-budget, black-oriented
crime and suspense cinema [14].

Sample recognition can also be applied to trace musical ideas in history. Just like melodic
similarity is used in the study of folk songs [15] and cover detection research [16], sample
recognition could allow musical re-use to be observed further into the recorded musical
history of the last two decades.

As an example of the complex history a musical idea can have, consider the popular 2006
Black Eyed Peas single Pump It. It samples the song Misirlou by Dick Dale (1962),
pioneer of the surf music genre, though in the album credits, the writing is attributed
to Nicholas Roubanis, a Greek-American jazz musician who made an instrumental jazz
version of the song in 1941 [17]. The song is in fact a popular Greek folk tune, played for
the first time by the Michalis Patrinos rebetiko band in Athens in 1927. Then again, the
tune has more recently gained a completely different cultural connotation after the surf
version of Misirlou was used in the opening scene of the popular 1994 Film Pulp Fiction
by Quintin Tarantino. The above illustrates how one melody can have many different
connotations and origins.

A third motivation is that sample recognition from raw audio provides a way to bring
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structure in large music databases. It could complement a great amount of existing
research in the automatic classification of digital information. Like many systems devel-
oped and studied in information retrieval, music similarity and music recommendation,
automatic classifiers are a more and more indispensable tool as the amount of accessible
multimedia and the size of personal collections continue to grow [12, 18, 13]. Examples
of such applications developed specifically in the field of content based Music Informa-
tion Retrieval include automatic genre classification, performer identification and mood
detection, too name a few. A good overview of directions and challenges in content-based
music information retrieval is given by Casey et al. in [12] and Müller et al. in [13].

A third possible motivation is the use of automatic sample detection for legal purposes.
Copyright considerations have always been an important motivation to understand sam-
pling as a cultural phenomenon; a large part of the academic research on sampling is
not surprisingly focused on copyright and law. In cases of copyright infringement, three
questions classically need to be answered:

1. Does the plaintiff own a valid copyright in the material allegedly copied?

2. Did the defendant copy the infringed work?

3. Is the copied work substantially similar?

where the most difficult question is the last one [7]: the similarity of copied work is not only
a matter of length and low-level musical context, but also of originality of the infringed
work, and how important a role the material plays in both the infringing and the infringed
work. Meanwhile, it is clear that even an ideal algorithm for sample detection would only
be able to answer the second question. The use of the proposed sample detection algorithm
for legal purposes is therefore still limited.

1.2 Musicological Context

1.2.1 Historical Overview

The Oxford Music Dictionary defines sampling as “the process in which a sound is taken
directly from a recorded medium and transposed onto a new recording” [19]. As a tool
for composition, it originated when artists started experimenting with tapes of previously
released music recordings and radio broadcasts to make musical collages, as was common
in musique concrète [14]. Famous early examples include the intro of The Beatles’ All
You Need is Love (1967), which features a recorded snippet of the French national hymn
Les enfants de la patrie.

The phenomenon spread out when DJ’s in New York started using their vinyl players to
do what was already then being done by ‘selectors’ in Kingston, Jamaica: repeating and
mixing parts of popular recordings to provide a continuous stream of music for the dancing
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crowd. Jamaican-born DJ Kool Herc is credited for being the first to isolate the most
exciting instrumental break in a record and loop that section to obtain the ‘breakbeat’
that would later become the corner stone of hip hop music [20]. The first famous sample-
based single was Sugarhill Gang’s Rapper’s Delight (1979), containing a looped sample
taken from Good Times by Chic (1979) [19].

The big breakthrough of sampling, however, followed the invention of the digital sampler
around 1980. Its popularisation as an instrument came soon after the birth of rap mu-
sic, when producers started using it to isolate, manipulate and combine well-known and
obscure portions of others recordings in ways it could no more be done by ‘turntablists’
using record players [21]. Famous examples of hip hop albums containing a great amount
samples are Paul’s Boutique by Beastie Boys, and 3 Feet High and Rising by De La Soul
(both 1989). The sampler became an instrument to produce entirely new and radically
different sonic creations.

The possibilities that the sampler brought to the studio have played a role in the appear-
ance of several new genres in electronic music, including house music in the late 90’s (from
which a large part of 20th century Western dance music originates), jungle (a precursor of
drum&bass music), dub and trip hop [22]. A famous example of sampling in rock music
is the song Bittersweet Symphony by The Verve (1997), which looped a pattern sampled
from a 1966 string arrangement of The Rolling Stones’ The Last Time (1965) [19].

1.2.2 Sampling Technology

Sampling can be performed in various ways. Several media have been used for recording,
manipulation and playback of samples, and each medium has its on functionalities. The
most important pieces of equipment that have been used for the production of a sample-
based compositions are:

Tape players: The earliest experiments in the recycling of musical recordings were done
using tape [23]. Recordings on tape could be physically manipulated between record-
ing and playback. This freedom in editing and recombination has been explored in
so-called tape music from the 1940’s on. An examples of a notable composer working
with tape was John Cage, whose William’s Mix (1952)was spliced and put together
from hundreds of different tape recordings [24].

Turntables: The birth of repetitive sampling, playing one sample over and over again,
is attributed to Jamaican ‘selectors’ who, with their mobile ‘sound systems’, looped
the popular sections of recordings at neighbourhood parties to please the dancing
crowds. Several record labels even re-oriented to compete in producing the vinyl
records that would be successful in these parties [20].

Digital samplers: The arrival of compact digital memory at the end of the 1970’s made
devices possible that allowed for quick sampling and manipulation of audio. Along
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with these digital (hardware) samplers came flexibility in control over the playback
speed, equalisation and some other parameters such as the sample frequency. Sig-
nal processing power of hardware samples was initially limited compared to what
software samplers can do nowadays. Classically, no time-stretching was provided
in a way that didn’t affect the frequency content of a sound. Samplers who did,
produced audible artefacts that were desired in only very specific contexts. Two of
the first widely available (and affordable) samplers were the Ensoniq Mirage (1985)
and the Akai S1000 (1989) [19]. An Akai S1000 interface is shown with its keyboard
version Akai S1000 KB in Figure 1.2.

Figure 1.2: Akai S1000 hardware sampler and its keyboard version Akai S1000KB (from
www.vintagesynth.com).

Software samplers: The first powerful hardware samplers could in their days be seen
as specialized audio computers, yet it didn’t take long before comparable func-
tionalities became available on home computers. Software samplers nowadays are
generally integrated in digital audio workstations (DAW’s) and provide independent
transposition and time-stretching by default. A notable software sampler is Able-
ton’s Sampler for Ableton’s popular DAW Live, a screenshot is shown in Figure
1.3.
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Figure 1.3: Screenshot of two panels of Ableton Live’s Sampler. The panels show the
waveform view and the filter parameters, amongst others. c©Ableton AG

1.2.3 Musical Content

In this section, the musical content of samples is described. This will be an important
basis for the formulation of the requirements a sample recognition should meet. Note
that no thorough musicological analysis could be found that lists all of the properties of
samples relevant to the problem addressed in this thesis. Many of the properties listed in
this section are therefore observations made when listening to many samples with their
originals, rather than facts.

From this point in this thesis on, all statements on sampling refer to hip hop samples only,
unless specified otherwise.

Origin

A large part of hip hop songs samples from what is sometimes referred to as African-
American music, or in other cases labeled Rhythm&Blues, but almost all styles of music
have been sampled, including classical music and jazz. Rock samples are less common
than e.g. funk and soul samples, but have always been a significant minority. Producer
Rick Rubin is known for sampling many rock songs in his works for Beastie Boys.

A typical misconception is that samples always involve drum loops. Vocal samples, rock
riffs, brass harmonies, etc. are found just as easily and many samples feature a mixed
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instrumentation. In some cases, instrumentals or stems (partials tracks) are used. This
being said, it is true that many of the first producers of rap music sampled mainly ‘breaks’.
A break in funk music is a short drum solo somewhere in the song, usually built on some
variation of the main drum pattern [20]. Some record labels even released compilations of
songs containing those breaks, such as the ‘Ultimate Breaks and Beats’ collection. This
series of albums, released between 1986 and 1991 by Street Beat records, compiled popular
and rare soul, funk and disco songs. It was released for DJ’s and producers interested in
sampling these drum grooves.2

After the first lawsuits involving alleged copyright infringements, many producers have
chosen to rerecord their samples in a studio, in order to avoid fines or lengthy negotiations
with the owners of the material. This kind of samples is referred to as ‘interpolations’.
The advantage for the producer is that he/she can keep the most interesting aspects of a
sample, but deviate from it in others. Because of these possibly strong deviations, it is
not the initial ambition of this work to include interpolations in the retrieval task.

Samples can also be taken from film dialogue or comedy shows. Examples are a sample
from the film The Mack (1978) by Dr. Dre in Rat Tat Tat Tat (2001) and a sample taken
from Eddie Murphy’s comedy routine Singers (1987) in Public Enemy’s 911 is a Joke
(1990, see also entry T153 in Appendix B). A radio play entitled Frontier Psychiatrist
has been sampled in Frontier Psychiatrist (2000) by The Avalanches, a collective known
for creating Since I Left You (2000), one of the most famous all-sample albums. In the
context of this thesis, non-musical samples will not be studied.

Length

The length of samples varies from genre to genre and from artist to artist. In complex
productions, samples can even be chopped up in very short parts, to be played back in a
totally different order and combination. The jungle genre (a precursor of drum&bass) is
the primary example of this [22]. It is often said that all early jungle tracks were built on
one drum loop known as the Amen Break, sampled from The Winstons’ Amen Brother
(1969; see also entry T116 in Appendix B), but rearranged and played at a much faster
tempo. The break would be the most frequently sampled piece of audio ever released, but
this could not be verified. In hip hop, short samples appear as well. They can be as short
as one drum stroke taken from an existing but uncredited record. Detecting very short
samples obviously makes the identification more difficult, both for humans and automatic
systems.

Recently in hip hop and R&B, the thin line between sampling and remixing has faded to
the extent that large portions of widely known songs reappear almost unchanged. The
Black Eyed Peas song Pump It mentioned earlier is an example. In other cases of long

2Note that the legal implications of sampling have remained uncertain until 1991, when rapper Biz
Markie was the first hip hop artist to be found guilty of copyright violation. This was the famous Grand
Upright Music, Ltd. v. Warner Bros. Records Inc. lawsuit about the sample of a piano riff by Gilbert
O’Sullivan in Markie’s song Alone Again) [21].
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samples, the sampled artist might appear as a collaborator on the song, as is for example
the case with Eminem ft. Dido’s Stan (2000). It samples the chorus of Dido’s Thank You
(2000; see entries T063 and T062 in Appendix B).

Playback speed

Samples as they appear in popular music, hip hop and electronic music often differ from
their original in the speed at which they are played back. This can change the perceived
mood of a sample. In early hip-hop, for example, the majority of known samples were
taken from soul or funk songs. Soul samples could be sped up to make them more
danceable while funk songs could be slowed down to give rhythms a more laid back feel.

Usually, the sample is not the only musical element in the mix. To make tonal samples
compatible with other instrumental layers, time-stretching can be done in way that does
not affect the pitch, or is done by factors corresponding to discrete semitone repitches.
For drums, inter-semitone pitch shifts are possible, provided there is no pitched audio
left anywhere in the sample. Until recent breakthroughs around 1999 and 2003, time-
stretching without pitch-shifting generally couldn’t be done without some loss of audio
quality [25, 26]. In most software samplers nowadays, this is easily accomplished.

In hip hop, repitches tend to be limited to a few semitones, with a small number of
exceptions in which vocal samples are intended to sound peculiarly high pitched or drums
to be drum&bass-like. Figure 1.4 shows the spectrogram of a 5 second sample (from
Wu-Tang Clan - C.R.E.A.M.) and its original corresponding excerpt (from The Charmels
- As Long As I’ve Got You). The bottom spectrogram reflects the presence of a simple
drum pattern and some arch-shaped melody. The unsteady harmonics of the voice in
the hip hop song (top), suggesting speech rather than singing, correspond to rap vocals
indeed. Closer inspection of the frequencies and lengths reveals that the sample has been
re-pitched one semitone up.

Filtering and Effects

The typically observed parameters controlling playback in samplers include filtering pa-
rameters, playback mode (mono, stereo, repeat, reverse, fade-out...) and level envelope
controls (attack, decay, sustain, release). Filtering can be used by producers to maintain
only the most interesting part of a sample. In drum loops, for example, a kick drum or
hi-hat can be attenuated when a new kick or hi-hat will be added later. In almost all
commercial music, compression will be applied at various stages in the production and
mastering process.

Other more artistic effects that can be heard include reverberation and delay, a typical
example being the very prominent echo effects frequently used in dub music [11], for
example to mask the abrupt or unnatural ending of a sampled phrase. Naturally, each of
these operations complicates the automatic recognition.
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Figure 1.4: Spectrograms of a 5 second sample (top) and its original (bottom).

As a last note on the properties of samples, it is important to point out that a sample
is generally not the only element in a mix. It appears between layers of other musical
elements that complement it musically but, as a whole, are noise to any recognition system.
Given that it is not unusual for two or more sample to appear at the same time, signal to
noise ratios (SNR) for these samples can easily go below zero.

1.2.4 Creative Value

The creative value of the use of samples can be questioned and its debate is as old as
the phenomenon itself. Depending as much on the author as on the case, examples
of sampling have been characterized ranging from ‘obvious thievery’ (in the famous 1991
Grand Upright Music, Ltd. v. Warner Bros. Records Inc. lawsuit) to ‘the post-modernist
artistic form par excellence’ [27].

Several scholars have placed sampling in a broader cultural context, relating it to tradi-
tional forms of creation and opposing it to the Western romantic ideal of novelty and the
‘autonomous creator’ [27, 21]. Hesmondhalgh states that “the conflict between Anglo-
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American copyright law and sample-based rap music is obvious: the former protects what
it calls ‘original’ works against unauthorized copying (among other activities), whereas
the latter involves copying from another work to produce a ‘derivative product”. He then
quotes Self, who concludes that this can indeed be seen as “a broader tension between
two very different perspectives on creativity: a print culture that is based on ideals of
individual autonomy, commodification and capitalism; and a folk culture that emphasizes
integration, reclamation and contribution to an intertextual, intergenerational discourse”
[8, 21]. Nevertheless has sampling become a wide-spread tool in many genres, and as
even criticists admit, the sampler has become ‘as common in the recording studio as the
microphone’ [28].

1.3 Research Outline

The goal of this thesis is to design and implement a automatic system that, given a
hip hop song and a large music collection, can tell when the hip hop song samples any
portion of the songs in the collection. Its definition may be simple, but to the best of the
authors’ knowledge, this problem has not been addressed before. Judging by the observed
properties of samples and the current state-of-the-art in audio identification (see Chapter
2), the task is indeed very difficult. To illustrate this, and refine the goals, a first list of
requirements for the sample recognition system can be stated.

1. Given a music collection, the system should be able to identify query audio that is
known to the system, but heavily manipulated. These segments may be:

• Very short,

• Transposed,

• Time-stretched,

• Heavily filtered,

• Non-tonal (i.e. purely percussive),

• Processed with audio effects and/or

• Appearing underneath a thick layer of other musical elements.

2. The system should be able to do this for large collections (e.g. over 1000 files).

3. The system should be able to do this in a reasonable amount of time (e.g. up to
several hours).

The above requirements will be compared to those of audio fingerprinting and other music
information retrieval systems in the next chapter. Some requirements are rather new to
information retrieval tasks, the short length and possible non-tonal nature of samples being
primary examples. Special attention will go to this non-tonality as well as transpositions
and timestretches for reasons also explained in chapter 2.
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1.3.1 Document Structure

Chapter 2 contains a review of the most relevant existing research in Music Information
Retrieval. This includes some notes on frame-based audio processing and a general de-
scription of the audio identification problem. Details are also given for several existing
types of audio identification systems, and their characteristics are critically discussed. As
a last section, the chapter will include the detailed description of an implementation of
one of these systems.

To evaluate the proposed systems, a music collection and an evaluation methodology are
needed. Chapter 3 reports on the compilation of a representative dataset of sampling
examples. This is an important part of the research and includes the manual annotation
of a selection of relevant data. Chapter 3 also includes the selection of evaluation metrics
that will be used, and the calculation of their random baselines.

In Chapter 4, a state-of-the-art audio identification system is optimised to obtain a state-
of-the-art performance baseline for the sample recognition task. In Chapters 5 and 6,
changes to the optimised approach are proposed to obtain a new system that fulfills as
many of the above requirements possible. Each of the proposals is evaluated. Chapters
7 discusses the results of these evaluations and draws conclusions about what has been
achieved. The conclusions lead to proposals for some possible future work.
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Chapter 2

State-of-the-Art

2.1 Audio Representations

The following very short section touches on some concepts in frame-based audio analysis.
Its purpose is not to introduce the reader to the general methodology, but to include some
relevant definitions for reference and situate the most-used variables in this report.

Frame-based audio analysis is used here to refer to the analysis of audio in the time and
frequency domain together. It requires cutting the signal into frames and taking of every
frame a transform (e.g. Fourier) to obtain its (complex) spectrum. The length and overlap
of the frames can vary depending on the desired time and frequency resolution.

2.1.1 Short Time Fourier Transform

The Discrete Fourier Transform

The discrete Fourier Transform (DFT) will be used to calculate the magnitude spectrum
of signals. For a discrete signal x(n) the DFT X(f) is defined by

X(f) =
N−1∑
n=0

x(n) e−
j2πfn
N

where

• n = 1 . . . N is the discrete time variable (in samples)

• f = 0 . . . N are the discrete frequencies (in bins).

• N is the length of the signal x(n).

13
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The DFT is easily and quickly calculated with the Fast Fourier Transform (FFT) al-
gorithm. Taking the magnitude |X(f)| of X(f) returns the magnitude spectrum and
discards all phase information.

The Short Time Fourier Transform

The Short Time Fourier Transform (STFT) will be used to calculate the temporal evolu-
tion of the magnitude spectrum of signals. It is a series of DFT’s of consecutive windowed
signal portions.

X(f, t) =
N−1∑
n=0

w(n) x(Ht+ n) e−
j2πfn
N

where t is the discrete time in frames. Important parameters are

• The window type used w(n).
In this thesis, a Hann window is used if nothing is specified.

• The window size N .
The FFT size is assumed N or the next power of two is used unless specified.

• The hop size H.
This variable is often defined by specification of the overlap factor N−H

N .

The magnitude yields the spectrogram of the function.

S(f, t) = |X(f, t)|

2.1.2 Constant Q Transform

A different approach to frequency analysis involves the Constant Q Transform (CQT) [29].
This transform calculates a spectrum in logarithmically spaced frequency bins. Such a
spectrum representation with a constant number of bins per octave is more representative
of the behaviour of the Human Auditory System (HAS) and the spacing of pitches in
Western music [30, 29]. It was proposed by Brown in 1991 as [29]:

X(k) =
1
Nk

Nk−1∑
n=0

w(n, k) x(n) e−
j2πQn
N .

where

• the size Nk of the window w(n, k) changes for every bin
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• the (constant) Q is the ‘quality factor’. It corresponds to the quality factor of an
ideal filter bank that has the desired number of bands per octave:

Q =
fk

δfk

– fk is the center frequency at bin k

– δfk the frequency difference to the next bin

Quality factor Q is kept constant in n and k, hence the logarithmically spaced central
frequencies. For a resolution of 12 bins per octave (a semitone), Q takes a value around
17. A resolution of three bins per semitone requires a Q of approximately 51.

A fast algorithm to compute the constant Q transform has been proposed by Brown and
Puckette [31]. It uses a set of kernels to map the output of a FFT to logarithmically
spaced frequency bins. A version of this algorithm has been made available by Ellis1 [32].
This implementation performs the mapping in the energy (squared magnitude) domain,
decreasing computation time at the expense of losing phase information. It also allows
the user to specify the used FFT size. Putting constraints on the FFT sizes result in a
blurring of the lowest frequencies, but an increase in efficiency.

The implementation has the following parameters:

• The FFT size N in ms (as with the STFT).

• The hop size H in ms (as with in the STFT).

• The central frequency fmin of the lowest bin k = 0.

• The sample rate SR determining the highest frequency fmax = SR/2.

• The number of bins per octave bpo determining Q as follows:

Q = 21/bpo − 1.

The algorithm returns a matrix with columns of length K, where K is the number of
resulting logarithmically spaced frequency bins as determined by fmin, fmax and bpo.

2.2 Scientific Background

The problem of sample identification can be classified as an audio recognition problem
applied to short or very short music fragments. In this sense, it faces many of the challenges
that are dealt with in audio fingerprinting research. The term audio fingerprinting is used

1http://www.ee.columbia.edu/ dpwe/resources/matlab/sgram/



16 CHAPTER 2. STATE-OF-THE-ART

for systems that attempt to identify unlabeled audio by matching a compact, content-
based representation of it, the fingerprint, against a database of labeled fingerprints [2].

Just like sample recognition systems, fingerprinting systems are often designed to be
robust to noise and several transformations such as filtering, acoustic transmission and
GSM compression in cell phones. However, in the case of samples, the analysed audio can
also be pitch-shifted or time-stretched and it can contain several layers of extra instruments
and vocals, etc. (as described in Chapter 1). Because of this unpredictable appearance,
the problem of sample identification also relates to cover detection [16]. Cover detection or
version identification systems try to assess if two musical recordings are different renditions
of the same musical piece. In state of the art cover detection systems, transpositions and
changes in tempo are taken into account.

Then again, the context of sampling is more restrictive than that of covers. Even though
musical elements such as melody or harmony of a song are generally not conserved, low-
level audio features such as timbre aspects, local tempo, or spectral details could be
somehow invariant under sampling. Thus, the problem can be situated between audio
fingerprinting and cover detection and seems therefore related to recognition of remixes
[33]. It must however be mentioned that ‘remix’ is very broad term. It is used and
understood in many ways, and not all of those are relevant (e.g. the literal meaning of
remix).

Sample detection shares most properties with remix detection. To show this, one could
attempt to make a table listing invariance properties for the three music retrieval tasks
mentioned, but any such table depends on the way the tasks are understood. Moreover,
both for remix recognition and cover detection it has been pointed out that basically any
aspect of the song can undergo a change. The statement that sample detection relates
most to remix detection is therefore based on the observation that remixes, as defined in
[33], are de facto a form of sampling as it has been defined in Chapter 1. The next section
is an overview of said research on remix recognition.

2.3 Remix Recognition

The goal in remix recognition is to detect if a musical recording is a remix of another
recording known to the system. The problem as such has been defined by Casey and
Slaney [33].

The challenge in recognizing remixed audio is that remixes often contain only a fraction
of the original musical content of a song. However, very often this fraction includes the
vocal track. This allows for retrieval through the matching of extracted melodies. Rather,
though, than extracting these melodies entirely and computing melodic similarities, dis-
tances are computed on a shorter time scale. One reason is that, as researchers in cover
detection have pointed out, melody extraction is not reliable enough (yet) to form the
basis of a powerful music retrieval system [16].
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2.3.1 Audio Shingles

Casey et al. used ‘shingles’ to compute a ‘remix distance’ [33]. Audio shingles are the
audio equivalent of the text singles used to identify duplicate web pages. Here, word
histograms are extracted for different portions of the document. These histograms can
then be matched against a database of histograms to determine how many of the examined
portions are known to the system. Audio shingles work in a comparable way.

Shingles

The proposed shingles are time series of extracted features for 4 seconds of windowed
audio. They are represented by a high-dimensional vector. The remix distance d between
two songs A and B is then computed as the average distance between the N closest
matching shingles. It can formally be defined as

d(A,B) =
∑
N

minN
i,j

∑
k

∣∣∣xi
k − y

j
k

∣∣∣2 ,
with xi ∈ A and yj ∈ B, shingle vectors drawn for the songs i and j.

The features used by the authors are PCP’s and LFCC’s, computed every 100ms. PCP’s
(pitch class profiles) are 12 dimensional profiles of the frequencies present in the audio,
where the integrated frequencies span multiple octaves but are collapsed into semitone
partitions of a single octave. LFCC’s (Logarithmic Frequency Cepstrum Coefficients) are
a 20-dimensional cepstrum representation of the spectral envelope. Contrary to MFCC’s
the features used here are computed in logarithmically spaced bands, the same 12th octave
bands as used when computing the PCP’s.

Figure 2.1 shows a block diagram of the shingle extraction. To combine the features into
shingles, the audio must be sliced to windows, and then to smaller frames by computing
the STFT (short time fourier transform)2. For implementation details regarding PCP
and LFCC’s, refer to [33]. The result of the extraction is a set of two descriptor time
series for every 4s window, in the form of two vectors of very high dimension: 480 and 800
respectively. An important (earlier) contribution of the authors is to show that Euclidian
distances in these high-dimensional spaces make sense as a measure of musical similarity,
and that ‘the curse of dimensionality’ is effectively overcome [34].

Locality Sensitive Hashing

Identifying neighbouring shingles in such high dimensional spaces is computationally ex-
pensive. To quickly retrieve shingles close to a query, i.e. less than a certain threshold r

2Note that, as can be seen in the diagram, the 4 s windows and STFT frames have the same hop size
(100 ms). In practice therefore, the STFT can be computed first and the windows can be composed by
simply grouping frames.
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Figure 2.1: Simplified block diagram of the extraction of audio shingles.

away, the described system uses a hashing procedure known as Locality Sensitive Hash-
ing (LSH). Generally in LSH, similar shingles are assigned neighbouring hashes, whereas
normal hashing will assign radically different hashes to similar items, so as only to allow
retrieval of items that are exactly identical.

The authors compute the shingles’ hashes by projecting the vectors xi on a random one-
dimensional basis V . The real line V is then divided into equal parts, with a length
corresponding to the similarity threshold r. Finally, the hash is determined by the index
of the part to which the vectors are projected. In a query, all shingles with the same
hash as the query are initially retrieved, but only those effectively closer than r are kept
after computing the distances. Figure 2.2 shows a histogram of how many shingles are
retrieved for relevant and non-relevant tracks in a remix recognition task.

Discussion

The overall performance of this method is reported to be good. In [1], the researchers
use the same algorithm to perform three tasks: fingerprinting, cover detection and remix
recognition. Precision and recall are high, suggesting that the algorithm could be success-
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Figure 2.2: Histogram of retrieved shingle counts for the remix recognition task [1]. The
upper graph shows the counts for relevant data and the lower shows counts for non relevant
data. A high number of shingles means a high similarity to the query (and therefore a
small distance).

ful in the recognition of samples. However, some comments need to be made.

The evaluation is limited to carefully selected tasks. For example, in the case of cover
detection the system is used to retrieve renditions of a classical composition (a Mazurka
by Chopin). The use of Chopin Mazurkas in Music Information Retrieval is popular, but
its use in the evaluation of Cover Detection algorithms has been criticized [35]. It is clear
that all performances of this work share the same instrumentation. In addition, the key
in which it is played will very likely not vary either. Contrary to what is suggested in the
author’s definition of remix detection in [33], the system as it is described does indeed
not account for any major pitch or key variations, such as a transposition (nor changes in
instrumentation, structure and global tempo).

The tasks of sample identification and remix recognition are similar, but not the same.
Transpositions will generally occur more often in sampled music than in remixes. Second
and more important, remix recognition is said to rely on detecting similarity of the pre-
dominant musical elements of two songs. In the case of sampling, the assumption that the
predominant elements of sample and original correspond, is generally wrong. The LFCC
features used to describe the spectrum will not be invariant to the addition of other mu-
sical layers. Finally, using Pitch Class Profiles would assume not only predominance of
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the sample, but also tonality. As said earlier, this is often not the case.

In extension of this short review, one could say that these last arguments do not only go
for the work by Casey, but also for other research in audio matching such as by Kurth
and Müller [36], and in extent for all of cover detection: matching tends to rely largely
on predominant musical elements of two songs and/or tonal information (in a minority of
cases timbral information) [16]. For sample recognition, this is not an interesting starting
point. However, many things could nevertheless be learned from other aspects of audio
matching, such as how to deal with transpositions.

2.4 Audio Fingerprinting

Audio fingerprinting systems make use of audio fingerprints to represent audio objects for
comparison. An audio fingerprint is a compact, perceptual digest from a raw audio signal
that can be stored in a database so that pairs of tracks can be identified as being the
same. A very widespread implementation for audio identification is the Shazam service,
launched in 2002 and available for iPhone shortly after its release [37].

A comprehensive overview of early fingerprinting techniques (including distances and
searching methods) is given by Cano et al. [2]. It lists the main requirements that a
good system should meet and describes the structure and building blocks of a generalized
content-based audio identification framework. Around the same time, there were three
systems being developed that will be discussed subsequently.

The work that is reviewed in most detail here relates to fingerprinting and is already over
eight years old. This is because the problem of robust audio identification can be regarded
as largely solved by 2003, later related research expanded over audio similarity (rather
than identity) to version detection and were situated in the chroma-domain [36].

2.4.1 Properties of Fingerprinting Systems

Requirements

There are three main requirements for a typical content-based audio identification system.

1. Discriminative power:
The representation should contain enough information (or entropy) to discriminate
over large numbers of other fingerprints from a short query.

2. Efficiency:
The discriminative power is only relevant if this huge collection of fingerprints can
be queried in a reasonable amount of time. The importance of the computational
cost of the fingerprint extraction is decreasing as machines become more and more
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powerful, yet the extraction of the fingerprint is still preferable done somewhere near
real-time.

3. Robustness:
The system should be able to identify audio that contains noise and/or has under-
gone some transformations. The amount and types of noise and transformations
considered always depend on the goals set by the author.

The noise and distortions to be dealt with have ranged from changes in amplitude, dy-
namics and equalisation, DA/AD conversion, perceptual coding and analog and digital
noise at limited SNR’s [5, 30], over small deviations in tape and CD playback speed
[38] to artifacts typical for poorly captured radio recordings transmitted over a mobile
phone connection [6, 3]. The latter includes FM/AM transmission, acoustical transmis-
sion, GSM transmission, frequency loss in speaker and microphone and background noise
and reverberation present at the time of recording.

Figure 2.3: Block diagram of a generalized audio identification system [2].

Typical structure

A typical framework for audio identification will have an extraction and a matching block,
as can be seen in Figure 2.3. Figure 2.4 shows a more detailed diagram of such an extrac-
tion block. It will typically include some pre- and postprocessing of the audio (features).
Common preprocessing operations are mono conversion, normalisation, downsampling,
and band-filtering to approximate the expected equalisation of the query sample. Possi-
ble postprocessing operations include normalisation, differentiation of obtained time series
and low resolution quantisation.
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Figure 2.4: Diagram of the extraction block of a generalized audio identification system
[2].

The efficiency of fingerprinting systems largely rely on their look-up method, i.e. the
matching block. However, the many different techniques for matching will not be discussed
in detail. As opposed to classical fingerprinting research, there is no emphasis on speed in
this investigation, and it is the conviction of the authors that, first of all, accurate retrieval
needs to be achieved. The following paragraphs review the most relevant previous research,
focusing on the types of fingerprint used and their extraction.

2.4.2 Spectral Flatness Measure

In 2001, Herre et al. presented a system that makes use of the spectral flatness measure
(SFM) [5]. The paper is not the first to research content-based audio identification but
it is one of the first to aim at robustness. The authors first list a number of features
previously used in the description and analysis of audio and claim that there are no
natural candidates amongst them that provide invariance to alterations in both absolute
signal level and coarse spectral shape. The arguments are summarized in Table 2.1.
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Energy Depend on absolute level
Loudness
Band-width Depend on coarse spectral shape
Sharpness
Brightness
Spectral centroid
Zero crossing rate
Pitch Only applicable to a limited class of audio signals

Table 2.1: List of traditional features that, according to [5], cannot provide invariance to
both absolute signal level and coarse spectral shape.

Methodology

Herre et al. then show that the spectral flatness measure provides the required robustness
and so does the spectral crest factor (SCF). The SFM and SCF are computed per frequency
band k containing the frequencies f = 0 . . . N − 1.

SFMk =

[∏
f S

2
k(f)

] 1
N

1
N

∑
f S

2
k(f)

SCF k =
maxk S

2
k(f)

1
N

∑
k S

2
k(f)

,

where S2
k is the power spectral density function in the band3 4.

Both measures are calculated and compared in a number of different frequency bands
(between 300 and 6000Hz). The perceptual equivalent of these measures can be described
as noise-likeness and tone-likeness. In general, features with perceptual meaning are
assumed to represent characteristics of the sound that are more likely to be preserved and
should thus promise better robustness.

Only few details about the matching stage are given by the authors. The actual finger-
prints consist of vector quantization (VQ) codebooks trained with the extracted feature
vectors. Incoming feature vectors are then quantized using these codebooks. Finally, the
database item that minimizes the accumulated quantization error is returned as the best
match.

Evaluation and Discussion

Evaluation of this approach is done by matching distorted queries against a database
of 1000 to 30000 items. All SFM related results for two of the distortion types are

3Recall that in this thesis, S denotes the magnitude spectrum, while X is the complex spectrum.
4Generally N depends on k, but this Nk is simplified to N for easy notation.
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Distortion type Window Bands Band spacing Set size Performance
cropped MP3 @ 96kbit/s 1024 4 equal 1000 90.0%
cropped MP3 @ 96kbit/s 1323 4 equal 1000 94.6%
cropped MP3 @ 96kbit/s 1323 16 equal 1000 94.3%
cropped MP3 @ 96kbit/s 1323 16 logarithmic 30000 99.9%
cheap speakers and mic 1024 4 equal 1000 27.2%
cheap speakers and mic 1323 4 equal 1000 45.4%
cheap speakers and mic 1323 16 equal 1000 97.5%
cheap speakers and mic 1323 16 logarithmic 30000 99.8%

Table 2.2: A selection of experiments illustrating the performance of the SFM-based
fingerprinting system with experimental setup details as provided in [5].

given in Table 2.2 as a summary of the reported performance (results for the SCF were
not significantly different). Window sizes are expressed in samples, the performance is
expressed as the number of items that were correctly identified by the best match. It is
also mentioned in [5] that the matching algorithm has been enhanced between experiments
but no details are given.

The reported performance is clearly good, almost perfect. The only conclusion drawn from
these results is indeed that ‘the features provide excellent matching performance both
with respect to discrimination and robustness’. However, no conclusions can be made
about which of the modified parameters accounts most for the improvement between
experiments: the change from 4 to 16 bands, the logarithmic spacing of bands, or the
change in the matching algorithm. More experiments would need to be done.

A secondary comment that can be made is that no information is given about the size
of the representations. Fingerprint size and computation time may not be the most
important attributes of a system that emphasises on robustness, yet with total absence
of such information it cannot be told at what cost the performance has been taken to
the reported percentages. Nevertheless, the authors show that the SFM and SCF can be
successfully used in content-based audio identification.

2.4.3 Band energies

Herre et al. claimed that energy cannot be used for efficient audio characterization.
However, their approach was rather traditional, in the sense that the extraction of the
investigated features has been implemented without any sophisticated pre- or postpro-
cessing. Haitsma et al. [30] present an audio fingerprint based on quantized energy
changes across the two-dimensional time-frequency space. It is based on strategies for
image fingerprinting.
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Methodology

The system they present cuts the audio in windowed 400 ms frames (with overlap factor
31/32) and calculates in every frame the DFT. The frequencies between 300 and 3000Hz
are then divided into 33 bands and the energy is computed for every band. To stay true
to the behaviour of the HAS, the bands are logarithmically spaced and non-overlapping.
If time is expressed as the frame number t and frequency as the band number k, the result
is a two-dimensional time-frequency function E(t, k).

Of this E(t, k), the difference function is taken in both the time and frequency domain,
and quantized to one bit. This is done at once as follows:

δE(t, k) =
{

1 E(t, k)− E(t, k + 1)− (E(t− 1, k)− E(t− 1, k + 1)) > 0
0 E(t, k)− E(t, k + 1)− (E(t− 1, k)− E(t− 1, k + 1)) ≤ 0

This results in a string of 32 bits for every frame T, called a subfingerprint or hash. The
combination of differentiation and one bit quantisation provides some tolerance towards
variations in level (e.g. from dynamic range compression with slow response) and smooth
deviations of the coarse spectral shape (e.g. from equalisation with low Q).

Matching, roughly summarized, is done by comparing extracted bit strings to a database.
The database contains bit strings that refer to song ID’s and time stamps. If matching
bit strings refer to consistent extraction times within the same song, that song is retrieved
as a match. It is shown that a few matches per second (less then 5% of bit strings)
should suffice to identify a 3 second query in a large database. To boost hits, probable
deviations from the extracted subfingerprints can be included in the query. This is a
way of providing some tolerance in the hashing system, though very likely at the cost of
discriminative power.

Evaluation and Discussion

There is no report found on any evaluation of this exact system using an extended song
collection and a set of queries. As a consequence, no conclusions can be made about the
system’s discriminative power in a real-life conditions. Instead, [6] studies subfingerprints
extracted from several types of distorted 3 second queries, to study the robustness of the
system. The effect of the distortions is quantified in terms of hits, i.e. hashes that are free
of bit errors when compared to those of the original sound. Four songs of different genres
and 19 types of distortion are studied. The types of distortion include different levels of
perceptual coding, GSM coding, filtering, time scaling and the addition of white noise.

The results are summarized in Table 2.3. The signal degradations, listed in the rows, are
applied to four 3 second songs excerpts, listed in the columns. The first number in every
cell indicates the hits out of 256 extracted subfingerprints. The second number indicates
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Distortion type Carl Orff Sinead O’Connor Texas AC/DC
MP3@128Kbps 17, 170 20, 196 23, 182 19, 144
MP3@32Kbps 0, 34 10, 153 13, 148 5, 61
Real@20Kbps 2, 7 7, 110 2, 67 1, 41
GSM 1, 57 2, 95 1, 60 0, 31
GSM C/I = 4dB 0, 3 0, 12 0, 1 0, 3
All-pass filtering 157, 240 158, 256 146, 256 106, 219
Amp. Compr. 55, 191 59, 183 16, 73 44, 146
Equalization 55, 203 71, 227 34, 172 42, 148
Echo Addition 2, 36 12, 69 15, 69 4, 52
Band Pass Filter 123, 225 118, 253 117, 255 80, 214
Time Scale +4% 6, 55 7, 68 16, 70 6, 36
Time Scale 4% 17, 60 22, 77 23, 62 16, 44
Linear Speed +1% 3, 29 18, 170 3, 82 1, 16
Linear Speed -1% 0, 7 5, 88 0, 7 0, 8
Linear Speed +4% 0, 0 0, 0 0, 0 0, 1
Linear Speed -4% 0, 0 0, 0 0, 0 0, 0
Noise Addition 190, 256 178, 255 179, 256 114, 225
Resampling 255, 256 255, 256 254, 256 254, 256
D/A + A/D 15, 149 38, 229 13, 114 31, 145

Table 2.3: Number of error-free hashes for different kinds of signal degradations applied
to four songs excerpts. The first number indicates the hits for using only the 256 sub-
fingerprints as a query. The second number indicates hits when the 1024 most probable
deviations from the subfingerprints are also used. From [6].

hits when the 1024 most probable deviations from those 256 subfingerprints are also used
as a query.

Theoretically, one matching hash is sufficient for a correct identification, but several
matches are better for discriminative power. With this criterion, it becomes apparent
that the algorithm is fairly robust, especially for filtering and compression. Distortion
types that cause problems are GSM and perceptual coding, the type that causes the least
trouble is resampling. However, there is enough information to conclude that this sys-
tem would fail in aspects crucial to sample identification: speed changes and addition of
effects.

First, even though the system handles changes made to the tempo quite well, experiments
with changes in linear speed (tempo and pitch change together) do bad: none of the
hashes are preserved. Second, the only experiment performed with the addition of noise
uses white noise. The noise is constant in time and uniform in spectrum and poses as
such no challenge to the system. Other types of noise (such as a pitched voice) are not
tested but can be expected to cause more problems.
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2.4.4 Landmarks

The most widely known implementation of audio fingerprinting has been designed by
Wang and Smith for Shazam Entertainment Ltd., a London based company5. Their
approach has been patented [39] and published [3]. The system is the first one to make
use of spectral peak locations.

Motivation

Spectral peaks have the interesting characteristic of showing approximate linear ’super-
posability’. Summing a sound with another tends to preserve the majority of the original
sound’s peaks [39]. Spectral peak locations also show a fair invariance to equalization.
The transfer functions of many filters (including acoustic transmission) are smooth enough
to preserve spectral details on the order of a few frequency bins. If in an exceptional case
the transfer function’s derivative is high, peaks can be slightly shifted, yet only in the
regions close to the cut-off frequencies [3].

Methodology

The general structure of the system is very comparable to the generalized framework
described in section 2.4.1. An overview is given in Figure 2.5.

Figure 2.5: Block diagram overview of the landmark fingerprinting system as proposed
by Wang [3].

5http://www.shazam.com/music/web/about.html



28 CHAPTER 2. STATE-OF-THE-ART

The extraction of the fingerprint is now explained. Rather than storing sets of spectral
peak locations and time values directly to a database, Wang bases the fingerprint on
‘landmarks’. Landmarks combine peaks into pairs of peaks. Every pair is then uniquely
identified by two time values and two frequency values. These values can be combined in
one identifier, which allows for faster look-up in the matching stage. The algorithm can
be outlined as follows6:

Algorithm 2.1

1. Preprocess audio (no details are given).

2. Take the STFT to obtain the spectrogram S(t, f).

3. Make a uniform selection of spectral peaks (‘constellation’).

4. Combine nearby peaks (t1, f1) and (t2, f2) into a pair or ‘landmark’ L.

5. Combine f1 , f2 and ∆t = t2 − t1 into a 32-bit hash h.

6. Combine t1 and the song’s numeric identifier into a 32-bit unsigned integer ID.

7. Store ID in the database hash table at index h.

Just like the hashes in the energy-based fingerprinting system (section 2.4.3), the hashes
obtained here can be seen as subfingerprints. A song is not reduced to just one hash, rather
it is represented by a number of hashes every second. An example of a peak constellation
and landmark are shown in Figure 2.6.

In the matching step, the matching hashes are associated with their time offsets t1 for
both query and candidates. For a true match between to songs, the query and candidate
time stamps have a common offset for all corresponding hashes. Number of subfingerprint
matching this way is computed as follows:

Algorithm 2.2

1. Extract all the query file’s hashes {h} as described in Algorithm 2.1.

2. Retrieve all hashes {hd} matching the query’s set of hashes {h} from the database,
with their song id’s {Cd} and timestamps {t1d}.

3. For each song {Cd} referenced in {hd}, compute the differences {t1d − t1}.
6Many details of the algorithm, such as implementation guidelines or parameter defaults, have not been

published
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Figure 2.6: Reduction of a spectrogram to a peak constellation (left) and pairing (right).
[3]

4. If a significant amount of the time differences for a song Cd are the same, there is a
match.

The last matching step is illustrated in Figure 2.7 showing histograms of the time differ-
ences {t1d − t1}.

Landmarks can be visualised in a spectrogram. An example of a fingerprint constellation
for an audio excerpt is given in Figure 2.8. The fingerprints are plotted as lines on
the spectrogram of the analysed sound. Note that the actual number of landmarks and
number of pairs per peak depends on how many peaks are found and how far they are
apart.

Evaluation and discussion

The system is known to perform very well. A thorough test of the system is done in [3]
using realistic distortions: GSM compression (which includes a lot of frequency loss) and
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Figure 2.7: The time differences td − t1 for non-matching tracks have a uniform distribu-
tion (top). For matching tracks, the time differences show a clear peak (bottom) [3].

addition of background noise recorded in a pub. The results show that high recognition
rates are obtained even for heavily distorted queries, see Figure 2.9. It is also shown that
only 1 or 2 % peaks survival is required for a match. Account of some of the experiences
of Shazam in the commercialization of this invention confirms this.

Some advantages and disadvantages of spectral peak-based fingerprints in the context of
sample identification are listed in Table 2.4. Clearly the algorithm has not been designed
to detect transposed or time-stretched audio. However, the system is promising in terms
of robustness to noise and transformations. An important unanswered question is if
percussive sounds can be reliably represented in a spectral peak-based fingerprint. It can
be noted that the proposed system has been designed to identify tonal content in a noisy
context, and fingerprinting drum samples requires quite the opposite.

Two more remarks by Wang are worth including. The first one is a comment on a property
the author calls ‘transparency’. He reports that, even with a large database, the system
could correctly identify each of several tracks mixed together, including multiple versions
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Figure 2.8: Fingerprints extracted from a query segment and its matching database file.
Red lines are non-matching landmarks, green landmarks match. [4]

of the same piece. This is an interesting property that a sampling identification system
ideally should possess. The second remark refers to sampling. Wang accounts:

“We occasionally get reports of false positives. Often times we find that the
algorithm was not actually wrong since it had picked up an example of ‘sam-
pling,’ or plagiarism.”

2.4.5 Implementation of the Landmark-based System

An implementation of the described algorithm has been made by by Ellis [4]. The script is
designed to extract, store, match and visualise landmark-based fingerprints as they have
been originally conceived by Wang and is freely available on Ellis’ website7.

7http://labrosa.ee.columbia.edu/matlab/fingerprint/
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Figure 2.9: Evaluation results of the landmark fingerprinting system [3].

Overview

An overview of the proposed implementation is given as a block diagram in Figure 2.10.
This is indeed a more detailed version of the diagram in Figure 2.5. A more detailed
diagram of the separation of extraction components is given in Figures 2.11 and 2.12.

Important properties of this implementation are (details in the upcoming paragraphs):

• A spectral peak is defined as a local maximum in the log magnitude spectrum.
The magnitude of a peak is higher than that of its neighbouring frequencies.

• A uniform selection of spectral peaks is made by selecting only those that exceed a
masking curve that is incrementally updated with every peak found. The procedure
is governed by many parameters.

• Absence of hypothesis testing: no criterion is implemented to decide if a match to
a query is found. Instead, when the system is given a query, it returns the number
of matching landmarks for every database file.
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Advantages Disadvantages
High robustness to noise and distortions. Not suited for transposed or time-stretched

audio.
Ability to identify music from only a very
short segment.

Designed to identify tonal content in a noisy
context, fingerprinting drum samples re-
quires the opposite.

Does not explicitly require tonal content. Can percussive recordings be represented by
just spectral peaks at all?

Table 2.4: Advantages and disadvantages of spectral peak-based fingerprints in the context
of sample identification.

Extraction

The extraction stage’s algorithm description (repeated here in emphasized type) can now
be supplemented with details about the implementation of every step. An overview of
parameters is included with defaults in parentheses.

Algorithm 2.3

1. Preprocess audio.

(a) Convert signal x(n) to mono

(b) Resample to samplerate SR (8000 Hz)

2. Take the STFT to obtain the spectrogram S(t, f).
STFT parameters are

• The window type (Hann)

• The window size N (64 ms)

• Hop size H (32 ms)

Further processing consists of

(a) Taking magnitudes of spectra, discarding phase information.

(b) Taking the logarithm of all magnitudes S(t, f).

(c) Apply a high-pass filter (HPF) to the spectrum curve as if it were a signal8.
The filter has one control parameter pole (0.98), the positive pole of the HPF.

These lasts steps are undertaken to make S less dependent on absolute level and
coarse spectral shape.

8Before filtering, the mean of the spectrum is subtracted in every frame to minimize ripple in the low
and high ends of the spectrum.
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Figure 2.10: Block diagram overview of the landmark fingerprinting system as imple-
mented by Ellis [4]. Mind the separation of extraction and matching stages. Each block
represents a Matlab function of which the function should be clear by the name.

3. Make a uniform selection of spectral peaks (‘constellation’).

(a) Estimate an appropriate threshold thr for peak selection, based on the first 10
peaks.

(b) Store all peaks of S(t, f) higher than thr(t, f) in a set of (t, f) tuples named
pks.

S(t, f) is a peak
S(t, f) > thr(t, f)

}
(t, f)→ pks.

(c) Update thr by attenuating it with a decay factor dec and raising it with the
convolution of all new pks with a spreading function spr.9

thr(t, f) = max
(
dec · thr(T − 1, k), pks(t, f) ∗ spr(f)

)
(d) Repeat steps (b) to (d) for t = t+ 1 until all frames are processed.

(e) Repeat steps (a) to (d) but from the last frame back and considering only (t, f)
tuples already in pks. This is referred to as ‘pruning’.

Important parameters governing the number of extracted pairs are

9This is an approximation, in reality the update is performed every time a new peak is found.
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• The decay factor dec (0.998), a function of the wrapping variable dens (10).

• The standard deviation dev of the Gaussian spreading function, in bins (30).

4. Combine nearby points (t1, f1) and (t2, f2) into a pair or ‘landmark’ L.
Parameters governing the number of extracted pairs are

• The pairing horizon in time ∆tmax (63 frames)

• The pairing horizon in frequency ∆fmax > 0 (31 bins).

• The maximum number of pairs per peak ppp (3).

L = {t1, f1, f2,∆t}

with ∆t = t1 − t2. All f (in bins) and t (in frames) are integers with a fixed higher
bound. Due to the horizons, ∆t is limited to a lower value than t2.

5. Combine f1 , f2 and ∆t into a 32-bit hash h.

h = f1 · 2(m+n) + ∆f · 2n + ∆t

with ∆t = t1 − t2 and m and n the number of bits needed to store ∆f and ∆t,
respectively.

m = dlog2 ∆fe
n = dlog2 ∆te

6. Combine t1 and the song’s identifier C into a 32-bit unsigned integer I.

I = C · 214 + t1

where 14 is taken as t1’s bit size.

7. Store I in the database hash table at index h.

Table 2.5 shows the names of the Matlab functions that implement the above algorithm
steps. Figures 2.10 and 2.11 show the same functions in a block diagram.

Matching

Implementation details for the matching algorithm are given in Algorithm 2.4.

Algorithm 2.4

1. All the query file’s hashes {h} are extracted as described in Algorithm 2.3.
Note that all parameters from Algorithm 2.3 can theoretically be configured inde-
pendently for extraction and matching. However, the only parameter to which easy
access is provided by default is
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Steps Matlab functions
1 find_landmarks
2
3
4
5 landmark2hash
6 record_hashes
7

Table 2.5: Implementation by Ellis [4] of the algorithm steps as described by Wang [3].
The algorithm steps relating to extraction (on the left) are implemented in three Matlab
functions (on the right) that can be found on the block diagram in Figure 2.10 and 2.11.

• the peak density parameter dens (controlling the decay factor dec of the mask-
ing threshold)

2. All database hashes {hd} matching the query’s set of hashes {h} are retrieved, with
their song id’s {Cd} and timestamps {t1d}.

3. For each song {Cd} referenced in {hd} the differences {t1d − t1} are computed.

4. If a significant amount of the time differences for song Cd are the same, there is a
match.
As said earlier, no hypothesis testing is done. There is no decision between match
or no match. The matching algorithm just returns the most frequent time offset
and the resulting number of matching landmarks for every database song.{

τC = mode {t1d − t1}
mC = freq {τC}

Where mode refers to the statistical moment returning the most frequent element
in a set and freq returns its frequency. The obtained mC is the number of matching
landmarks for database song C, it can be used to compute inter-song distances.

Table 2.6 shows the names of the Matlab functions that implement the above steps of
Algorithm 2.4. Figures 2.10 and 2.11 show the same functions in a block diagram.
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Figure 2.11: Closer look at the extraction stage of the landmark fingerprinting algorithm.
Arguments and parameters are indicated for the most important blocks.

Steps Matlab functions
1 find_landmarks

landmark2hash
2 get_hash_hits
3
4 match_query

Table 2.6: Implementation by Ellis [4] of the algorithm steps (see Algorithm 2.4) as
described by Wang [3]. The algorithm steps relating to matching (on the left) are imple-
mented in four Matlab functions (on the right) that can be found on the block diagram
in Figure 2.10 and 2.12.
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Figure 2.12: Closer look at the matching stage of the algorithm. Note that many of the
components are the same as in the extraction stage. The queries are represented as a
database for later convenience.



Chapter 3

Evaluation Methodology

This chapter describes the evaluation strategy. Designing an evaluation methodology
includes the assembly of a ground-truth database, the selection of a set of evaluation
metrics and the implementation of the evaluation scripts that calculate these metrics
from retrieval results. Also in this chapter, the evaluation metric’s random baselines are
computed using randomly generated values instead of actual results. They will be used
as a reference in later evaluation.

3.1 Music Collection

The first step towards the development of a sample recognition system is a ground truth
database. A good ground truth database is essential for testing and final evaluation. It
should be representative and complete. In practice, this means the collection should be
large enough to contain at least a few examples of most common types of sampling found.
Some annotations should also be made, not only comments as a reference for later, but
also quantifiable properties for evaluation. The complete database, including all queries,
candidates and samples, can be found in Appendix B.

3.1.1 Structure

Tracks

In this report, the songs that contain one or more samples are referred to as ‘queries’,
and the songs that have been sampled are ‘candidates’ (see section 3.1.1). All query and
candidate tracks in the database are labelled starting with T, the first track being T001
and the last one T199 (not all numbers in between are taken and queries and candidates
are mixed). The corresponding audio files are stored in MP3 and WAV format with this
label as their file name. All tracks are annotated with:

39
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Artist Title Year Genre
T034 Pete Rock & C.L. Smooth Straighten it Out 1992 Hip-hop
T035 Ernie Hines Our Generation 1972 R&B/Soul

Table 3.1: Example: two tracks as they are represented in the database. Fore more
examples, see Appendix B

- Artist

- Track title

- Year of album release

- Genre

Genre can be either Hip-hop, R&B/soul, funk, jazz, world or rock. Table 3.1 illustrates
how two tracks are represented in the database. There is a total of 144 query and candidate
tracks in the database.

Samples

Each occurrence of a portion of one track in another is a sample. Each sample has a label
between S001 and S137 and references two track plus a set of annotated time stamps.

- Sampled track (C)

- Track in which the fragment appears as a sample (Q)

- Time at which the fragment occurs in the candidate (TC) 1

- Time at which the fragment occurs in the query the first time (TQ)

- Number of times the sample appears in the query (N)

- Optional comments (e.g. ‘maybe interpolated’, ‘short’, ‘long’...)

If a query samples two fragments of the same candidate, two samples will refer to the
same C and Q. Of the 144 referenced tracks, 76 are query and 68 candidate files. Table
3.2 gives an example of a sample as it is represented in the database. There is a total of
104 samples in the database.

1The resolution of time annotations was 1 second, not only because this was the accuracy of available
annotations on specialized websites and of the playback software.
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C Q TC TQ N Comments
S019 T035 T034 0:40 0:10 48 vocals

Table 3.2: Example of a sample as it is represented in the database. Fore more examples,
see Appendix B

Noise files

To make the retrieval task more challenging, 320 noise files were added to the database
and labeled N001 to N320. These files are songs that are similar to the candidate songs
in genre, length and audio quality (some of them even contain sampled breaks), but have
not been sampled by any of the queries. A match with any of them is therefore a false
positive. With the noise files, there is a total of 464 tracks in the database.

3.1.2 Content

Scope of the Collection

The outlines for the assembly of the ground truth database are listed in the form of
three important restrictions. The most important reason to set some limitations to the
collection content is that a database cannot be representative to a range of concepts that
is too wide. Also considerably important is that the collection is built manually. Time and
resources are required to explore and understand the music and to collect and annotate a
large amount of files, and selectivity makes this a feasible task.

1. Only hip hop songs are considered as queries. As said in section 1.2, many genres
in popular and electronic music make use of samples, but this work restricts to just
one. Hip hop is chosen because the genre and the practice of sampling are connected
in their very origins. As always in genre labeling, some confusion is possible, yet
especially so for songs that sample from other genres. Here, only songs that show
clear hip hop characteristics, i.e. rap vocals and samples, are considered.

2. Only direct samples are considered. Direct sampling involves audio from the original
sampled record. ‘Interpolations’ (see 1.2) or samples that are probably interpolated,
are not considered. It is often very hard to tell if a sample is a direct sample or
not. Expert sources do not exist except for the artist himself. Therefore, some of
the tracks in the database have been annotated with a ‘maybe interpolated’ label,
for possible later reference.

3. Only samples on the order of one second or longer were considered, as annotations
were done manually on a time scale limited to seconds. Short samples (as short as
one second) were only included if they were repeated several times throughout the
query.
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The ground truth was composed using valuable information from specialized internet
sites. Especially the websites Whosampled2 and Hip hop is Read3 proved particularly
useful. The former provides the possibility to listen to songs and provides user-submitted
information about the time at which the sample occurs in both query and candidate, the
latter contains a lot of background information.

Representativeness

In the construction of the ground truth, special attention was given to representativeness.
Some distinctions were made to identify types of samples, so an eye could be kept on the
share of each of those categories in the whole of the database:

Drum samples versus tonal samples. During the compilation of this collection, it of-
ten proved difficult to obtain a high quality digital version of candidate files. A good
source is the Extended Player collection ‘Ultimate Breaks and Beats’ mentioned in
section 1.2, but these records mainly contain drum breaks. To keep the database rep-
resentative, some effort was put into including more samples than just those found
on this kind of compilations. This was also important not to bias the database
towards older examples, dating from the days in which the series were particularly
popular.

Long samples versus short samples. Samples are not always easily recognizable. There
is an entire on-line community of people devoted to the identification and documen-
tation of samples in all kinds of music. One can assume that long samples are
generally easier to recognize than short ones, or at least easier to distinguish from
similar samples. Therefore, the collection made for the ground truth could be biased
in favour of longer, perhaps more interesting samples. In attempt to prevent this,
some very short samples were added (e.g. entries S046 and S056 in Appendix B).
The longest sample in the database is 26 seconds long and repeated 5 times, the
second longest sample is less than 12 seconds long.

Isolated samples versus background samples. Isolated samples, i.e. samples that
appear at least once with little or no extra musical layers on top of it, are easier
to recognize as well. To keep the ground truth representative, some of the included
samples are obscured by a rather thick layer of other samples or instruments (e.g.
S084).

Other aspects such as amount of time-stretching, re-pitching and effects are not taken into
account. It is assumed that not giving any special attention would result in a random but
representative distribution of properties. Generally, samples and originals were included
if they could be recognized as the same by a human listener.

2www.whosampled.com
3www.hiphopisread.com
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3.2 Evaluation metrics

General evaluation procedures make a distinction between queries and candidate files.
Every query (hip-hop song) is fed to the system . The system then returns matrices
containing the variables computed for every query vs. candidate/noise file pair. Three
evaluation metrics were chosen to quantify the system’s performance.

The Mean Average Precision (MAP) was chosen as the main evaluation measure.
The MAP is a common evaluation measure for information retrieval tasks [40]. It
works on the distance matrix, i.e. the matrix with computed distances between all
query and candidate/noise files, and is computed as follows.

1. For every query Q, sort the candidate/noise files C from lower to higher distance.

2. At every correctly retrieved document Cm in Q, the precision so far is calculated.

3. Average the obtained precisions over all Cm.

4. Compute the mean of these average precisions over all Q to obtain the MAP.

Two more evaluation measures were conceived to measure the performance of the system
in localizing samples within a song. Ultimately, the metrics were not used, but annotations
were made and added to the logged samples. This information could be very valuable in
future work on (the identification of) hip hop samples.

The mean errors in TC and TQ. For every sample, the times TC and TQ at which
the sample occurs in candidate and query is estimated to obtain the errors ETC and
ETQ. The mean of these errors is computed over all correctly retrieved elements and
all queries.

The mean error in N. For every sample, the number of occurrences N is counted to
obtain the error EN. The mean of this EN is then computed over all correctly
retrieved elements and all queries.

An evaluation function is implemented in Python to calculate these measures from a
distance matrix (for the MAP), a TC and TQ matrix, and a matrix with estimates for
N, plus the ground truth. The dimensions of these matrices are the number of queries by
the number of candidates including noise (76 × 388).



44 CHAPTER 3. EVALUATION METHODOLOGY

MAP ETC ETQ EN
Baseline 0.017 103.40 98.51 3.57
Standard deviation 0.007 6.90 6.62 0.79
Minimum value 0.008 87.77 80.57 2.16
Maximum value 0.043 119.66 115.66 5.50

Table 3.3: Random baselines for the proposed evaluation measures and the ground truth
database. Results summarized from 100 iterations.

3.3 Random baselines

The performance of an information retrieval system should always be seen in the context
of the used data. Precision and recall depend on the size of the candidate collection and
if this set contains noise or not. In an ideal evaluation, the set of candidates is infinite. A
random selection of matches will therefore yield a precision and recall of both zero. In a
realistic experiment however, this random baseline can be significant. This is why noise
files are added to the candidate set and the random baselines are calculated as a reference
for later results.

The random baselines corresponding to these evaluation measures were computed by
generating 100 random matrices for each of the variables involved.

• Distances for the MAP were uniform between 0 and 1

• T1 and T2 were uniform between 0 and the length of the track

• N (because of its complex distribution) were random permutations of the true oc-
currence counts

A statistical summary of the 100 iterations is given in the table 3.3.



Chapter 4

Optimisation of a State-of-the-art
System

Chapter 2 gives an overview of the most relevant work done in what could be called ‘music
identification’. The ground truth dataset’s random baselines have been summarized in
Table 3.3. However, apart from the random baselines, there needs to be a state-of-the-art
reference to which results are ultimately compared in the evaluation. For this purpose,
the most promising of the reviewed systems was put to the test and optimised in a first
experiment involving all queries and the complete database of candidates and noise files
to obtain the state-of-the-art performance. The observed parameter in this optimisation
is the MAP.

4.1 Optimisation of the Landmark-based Audio Fingerprint-
ing System

The chosen system is the landmark based audio search algorithm by Avery Wang [3]
described in section 2.4.4. The reasons why this implementation has been chosen come
down to its advantages as they were described in Table 2.4.

• High robustness to several types of noise and distortion.

• Ability to identify music from only a very short segment.

• Does not explicitly require tonal content.

4.1.1 Methodology

The implementation by Ellis [4] described in section 2.4.5 has been used. Extensive exper-
iments were carried out to optimise parameters of the system. However, some adaptations
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had to be made.

Adaptations

First, as the input of the evaluation script requires a distance matrix, a distance function
had to be defined. The most straightforward option is chosen: the distance between two
files is inversely proportional to the absolute number of matching landmarks (hence da).
For any query and landmark pair (Q,C):

da =
1

mC + 1

where mC is the number of matching landmarks for candidate C.

It has proved helpful to define an alternative distance, normalising the number of matching
landmarks by the total number of landmarks extracted (hence dn). It is determined by
the fraction of extracted landmarks that match.

dn = 1− mC

lQ

where lQ is the number of landmarks extracted from the (sliced) query Q. On average,
the choice of distance measure did not significantly influence the results of experiments.
Rather, the distance serves as a useful second opinion, so both distances will normally be
reported.

Second, wrapper functions had to be written to feed the audio to the algorithm. The
algorithm has been designed to handle candidates of lengths on the order of minutes,
and queries of lengths on the order of seconds. The wrapper functions ideally reflect this
difference. Yet this is not a drawback, it actually suits the problem. Sample identification
does not aim to obtain the global similarity between two files, it aims at understanding
which particular segments are alike.

A first wrapper function written in Matlab extracts all the candidate and noise files to the
database. A second wrapper slices all query audio to chunks with length NW , computed
at every hop of length HW , and feeds those to the system one by one.

Choice of Parameters to Optimize

The system in [4] is very flexible, but in optimisation this causes some problems. As
experiments take up to several hours with the available computational resources, there
is no time to study the effect of all parameters in all possible configurations. To make a
selection, the adapted system’s parameters can roughly be divided into three groups, as
shown in Table 4.1: parameters governing the properties of the landmarks, parameters
regulating the number of landmarks and parameters of the query windowing. Please refer
to section 2.4.5 for more details about the role of every parameter.
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NW Parameters governing the slicing of the query
HW

SR Parameters governing the properties of the landmarks
N
H
∆tmax

∆fmax

ppp Parameters governing the number of landmarks
dens
dev

Table 4.1: Parameters of the (adapted) implementation of the landmark-based audio
search system by Wang (see section 2.4.5 for details). They can roughly be divided into
three categories.

1. The parameters NW and HW governing the slicing of the query have to be opti-
mised without any doubt. There are no defaults and the effect of changing them is
unknown.

2. Changing the parameters that make up the properties of the landmarks generally
has an effect on the hashing procedure. Actions such as increasing the bandwidth
(higher SR) or the frequency resolution (higher N) will lead to a bigger fingerprint
size. The choice by Ellis to work with 22-bit landmarks is not only implemented in a
rather inflexible way, it is also a reasonable compromise in itself. Adding more bits
to the hash would allow for less landmarks to be stored in the same bucket when the
total hashtable size is limited to that of the largest matrix storeable in the RAM of
an average computer running Matlab with default memory settings. For this reason,
the parameter SR, N and H are left unchanged in the optimisation experiment.

3. Changing parameters that control the number of landmarks is a valid focus for
optimisation. The parameters dens, ppp and dev will be included in the set of
parameters to be optimised. It is an interesting property of these parameters that the
number of extracted landmarks can be greater for the query than for the candidate.
This could be done to save on fingerprint size, but also reflects the reality of many
types of fingerprinting tasks: the query contains the most information, and only a
part of it relates to its matching candidate. This allows to emphasize on the matching
process and keep the candidate database the same, so that more experiments can
be done.

Starting with the default settings, the chosen parameters (NW and HW , dens, ppp, dev)
are now changed incrementally and one by one, until a maximum MAP is found.
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NW HW ppp dens dev MAPn

2 1 3 10 30 0.038
4 1 3 10 30 0.055
8 1 3 10 30 0.060
12 1 3 10 30 0.089
16 1 3 10 30 0.079

Table 4.2: Results from the optimisation of the query chunk size NW . A sparse set of
lengths is chosen as each experiment with HW = 1 takes several hours.

4.1.2 Results

Optimisation of (NW , HW ).

The first step is the optimisation of NW . Recall that every query file is fed to the matching
script as a series of segments of length NW (in seconds), with an overlap determined by
the hop size HW (in seconds). The time resolution of annotations is limited to one second,
therefore a maximum overlap was chosen by setting HW = 1. An optimal window size
was then found by varying NW and running a complete experiment with all queries and
a full database at every step. Two remarks must be made.

• Experiments with HW = 1 took up to 10 hours, so only few runs could be done
within the available time.

• Only one distance function dn was initially in use: only one MAP is computed for
every complete run.

An optimal window size of 12 seconds is found. Results are shown in Table 4.2.

In the next series of experiments, HW was increased to 6 (or 50% overlap) in order to
perform experiments faster. This decision is based on two assumptions.

1. The effect of changing the query start time is independent of parameter choices for
ppp, dens and dev.

2. An overlap of 50% does not leave any information unused. Some samples may no
longer be represented entirely in one query, but this goes only for samples longer
than 6 seconds.

Optimisation of ppp

The next parameter that has been optimised is the ppp of the query fingerprint. A series
of experiments is performed with default extraction parameters but a varying ppp at the
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NW HW ppp dens dev MAPn MAPa

12 6 1 10 30 0.093 0.122
12 6 2 10 30 0.099 0.108
12 6 3 10 30 0.116 0.114
12 6 4 10 30 0.111 0.114
12 6 5 10 30 0.115 0.114
12 6 7 10 30 0.116 0.114
12 6 10 10 30 0.110 0.117
12 6 15 10 30 0.110 0.116

Table 4.3: Results of the optimisation of the target number of pairs per peak ppp for the
query fingerprint. The candidate extraction parameters were kept default.

NW HW ppp dens dev MAPn MAPa

12 6 10 16 30 0.103 0.098
12 6 10 20 30 0.117 0.110
12 6 10 22 30 0.121 0.137
12 6 10 24 30 0.121 0.141
12 6 10 25 30 0.127 0.128
12 6 10 28 30 0.127 0.122
12 6 10 32 30 0.128 0.111
12 6 10 36 30 0.133 0.118
12 6 10 40 30 0.124 0.111
12 6 10 44 30 0.125 0.112

Table 4.4: Results from the optimisation of the target landmark density dens of the query
fingerprint. The candidate extraction parameters were kept default.

matching stage. Recall that ppp is the number of pairs that can be formed per peak. It
is set by default to 3. After testing, an optimal target ppp is found to be 10. Results are
given in Table 4.3.

Optimisation of dens

The third parameter that is optimised is dens. It controls the masking decay factor
dec. In the peak selection process, this main parameter governs how far the applied
masking extends over time. The resulting density parameter dens is optimised in a series
of experiments involving the same default extraction parameters, but using ppp = 10 and
a varying dens for matching. The results are displayed in Table 4.4: an optimum is found
in dens = 36.
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NW HW ppp dens dev MAPn MAPa

12 6 10 36 10 0.111 0.113
12 6 10 36 15 0.123 0.113
12 6 10 36 20 0.122 0.129
12 6 10 36 25 0.109 0.123
12 6 10 36 30 0.133 0.118
12 6 10 36 35 0.114 0.105

Table 4.5: Results from the optimisation of the query fingerprint’s dev parameter, con-
trolling the extension of masking in the frequency dimension. The experiments show that
the default value std = 30 is also optimal.

NW HW ppp dens dev MAPn MAPa Random Baseline
12 1 10 36 30 0.147 0.128 0.017 (0.007)

Table 4.6: State-of-the-art baseline with parameters of the optimised landmark finger-
printing system. The random baseline (mean and std) are provided for reference.

Optimisation of dev

As a fourth and last step in the optimisation, dev is optimised. It is the standard deviation
of the Gaussian spreading function with which the peaks are convolved to obtain the up-
dated masking threshold. It controls the extension of masking in the frequency dimension
and defaults to 30 bins. In the last set of experiments dev is varied for the extraction of
the query fingerprint, while candidate extraction parameters are kept default. The results
in Table 2.4 show that the default value 30 is also optimal and that the influence of this
parameter is minor.

The outcome of all described experiments are summarized in Table 4.6 listing the opti-
mised parameters and the resulting state-of-the-art baseline. The final baseline has been
obtained by repeating the most promising of above experiments with HW = 1.

4.1.3 Discussion

A few remarks situating these results:

• The presented experiments cannot be regarded as a complete optimisation of the
system. First, the parameters that have not been included in the optimisation could
have an effect on performance, and second, the optimised parameters were only
optimised for the matching stage for reasons made clear in section 4.1.1.

• Concluding that the found optimal values will always hold as an optimum in different
contexts would also be too bold a claim. Parameters of a complex system can
generally cannot be expected to behave in a completely independent manner.
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Q C Instruments Tonal Transposed Comments
S001 T001 T002 bass, drums yes no
S005 T008 T007 several yes no
S015 T026 T027 several yes no
S038 T063 T062 several yes no very long
S052 T086 T088 drums no no short
S061 T099 T098 drums no no never isolated
S067 T109 T108 drums yes no very soft synth
S079 T146 T145 drums yes no very soft piano
S101 T176 T177 bass, drums yes no
S103 T179 T180 several yes no
S107 T184 T083 drums no no never isolated
S112 T187 T088 drums yes no toms present

Table 4.7: Overview of the samples that were correctly retreived top 1 in the optimised
state-of-the-art system, and some of their properties.

However, a consistent and thorough effort to maximize the performance has been done.
This being said, it is interesting to point out that the obtained optimum for NW makes
sense as a time scale on which to observe samples. As said in section 3.1, all but one of
the samples in the ground truth database NW are shorter than 12 seconds.

Overall, the obtained state-of-the-art baseline is clearly far from the random baseline for
the MAP, several times greater than the maximum over 100 random iterations. This
shows that the basic principle of spectral peak-based fingerprinting effectively works in
some cases. To see in which cases it worked and for which queries it didn’t, the next
paragraph analyses the optimised performance in terms of recognised and unrecognised
samples.

Performance analysis

It is useful to take a closer look at the results obtained with the optimised system. The
main question to ask is: which kind of samples are retrieved and which are not? The
retrieval system computes only similarities, it does not have a threshold to distinguish
between retrieved and not retrieved. For this reason, a script was written in Matlab to
extract the query and candidate IDs Q and C for all correct top 1 retrievals. The following
was observed:

• 12 out of the 76 queries retrieve a relevant document as a best match. The 12 samples
involved are listed in Table 4.7, with some useful extra information annotated after
listening.

• All of these samples appear at original pitch and tempo. Time-stretched or trans-
posed audio is not recognised.
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• Both drum and tonal samples have been recognised. This suggests that, even though
being spectral peak-based, the system is able to deal with queries with a generally
flat spectrum such as drum recordings. However, 3 of the 6 samples annotated
with ‘drums’ actually do contain some pitch, either from the very subtle presence of
another instrument, or from toms (see Table 4.7). Also, 4 of them appear isolated.
Hence, no conclusion can be made about the ability of the system to recognise pure
percussive sounds in a tonal context.

• Still only a small minority of samples is identified. Apart from re-pitch detection
and problems identifying drum loops, some other issues could still be at play: most
detected samples are rather long and not buried too deep into the mix. Possibly
sample length and amount of noise contribute to the challenge.

More could be learned from a look at those samples that are not retrieved, but in this stage
of the work, these are very numerous. Also, apart from those retrieved as a best match,
only two more relevant documents were retrieved as top 5. Listening to the confused files
could not clarify why these matches were ‘almost found’, but not entirely.

Conclusions

The three main conclusions that can be drawn from this optimisation experiment are:

1. An optimised state-of-the-art fingerprinting system has been found able to, in a
small number of specific cases, recognise real-life examples of sampling. Performance
significantly above random has been achieved.

2. Transposed and/or time stretched audio are not recognised by the fingerprinting
system.

3. Drum samples have been identified, but more experiments are needed to make con-
clusions on the identification of percussive sounds.



Chapter 5

Resolution Experiments

The following experiments propose changes to the fingerprinting strategy in an attempt to
increase the state-of-the-art performance. The new strategies are tested and the results are
discussed. Along the way, the challenges will become more clear with every experiment.
For now, the experiments have been set-up to deal with two major challenges:

1. Transposed and time-stretched versions of the same sounds need to be identifiable
as the same sound.

2. Percussive sounds must be fingerprintable.

The first of the following sections reports on the importance and behaviour of some of the
parameters that were not considered in the optimisation. In the second section, a more
drastic change is made to the fingerprinting strategy by proposing the use of a constant
Q transform to obtain the spectral representation. Later experiments investigate some
possible ways to deal with transposed and time-stretched samples.

5.1 Frequency Resolution and Sample Rate

To further assess if the system is able to recognise pure percussive samples, new changes
have to be made to the algorithm explained in section 2.4.5 and optimised in Chapter
4. A promising set of parameters to turn to is SR, N and H. These parameters have
previously been left out of the optimisation because changing them would affect the hash.
The parameters SR and N can for this reason not be increased. However, they can be
decreased, or varied together.
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5.1.1 Motivation

For the sake of fingerprint transparency, i.e. the capability of the system to distinguish the
presence of several sounds at the same time, lowering the frequency resolution intuitively
seems counterproductive. However, a look at the drums samples inside some of the queries
has shown that:

• Many of the loops consist for the most part of distinct strokes with a clear onset.
These strokes might mask other sounds present during the short time at which their
energy peaks.

In the spectral domain, it has then been observed that:

• Drum sounds generally have a noisy spectrum. This means that there are only few
well-defined spectral peaks and few or none are regularly spaced. Compared to a
tonal sound, a drum sound is stochastic and is therefore less defined by its spectral
details, yet all the more by its spectral envelope.

• From inspecting the spectrum of a number of drum strokes, it is observed that the
defining spectral elements of bass and snare drum sounds are in the lower frequency
range. Indeed, the frequency regions of highest energy for a bass and snare drum
should be 0-150 Hz and 100-500 Hz, respectively [41]. Spectrums such as the one in
Figure 5.1 reflect this.

The intention here is obviously not to describe or discriminate between bass drum and
snare sounds. Nevertheless, knowledge of the spectrum can be useful. For example,
in perceptual coding, several technologies make use of decomposition of the signal into
sinusoids and noise [42]. Noise can then be coded by its spectral envelope (for examples
as a series of ERB or Bark band energies) to save bits, as in [43]. Under this type of
coding, any spectral details on finer scale than the spectral envelope will be lost.

This is the motivation for the first of the following performance studies, in which N and H
are decreased, thus lowering the frequency resolution, but increasing the time resolution.
As an example, computing the spectrum with a window of N = 32 ms at SR = 8000 Hz
yields a positive magnitude spectrum of 64 bins. Corresponding to a bandwidth of around
64Hz per bin, this value approaches the bark band width for low frequencies, classically
approximated as 100Hz for central frequencies below 500 Hz [44].

The observations also inspired for a second series of experiments, in which the sampling
rate SR is lowered to extract more landmarks from those spectral regions in which bass
and snare drums are classically discriminated. No hypothesis is formulated for any of
these experiments, the simple objective is to study the effect of the involved parameters
on the overall system performance.
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Figure 5.1: Spectrum of a bass and snare drum onset extracted from track T085 (Isaac
Hayes - The Breakthrough) (SR = 8000 Hz, N = 64 ms). Frequencies up to 1000 Hz are
shown. The dashes indicate the 150 Hz line and the 100 and 500 Hz lines, respectively.
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NW HW ppp dens dev SR N(ms) H(ms) MAPn MAPa

12 6 10 36 30 8000 64 32 0.133 0.118
12 6 10 36 30 8000 32 16 0.105 0.100
12 6 10 18 15 8000 32 16 0.122 0.111
12 6 10 36 30 8000 16 8 0.089 0.087
12 6 10 18 15 8000 16 8 0.132 0.116
12 6 10 9 7.5 8000 16 8 0.123 0.115

Table 5.1: Results of experiments varying the FFT parameters N and H. The previously
optimised parameters were kept optimal. In some experiments, the masking parameters
dens and dev are adapted to reflect the changes in frequency and time resolution, but
keeping the total density of landmarks the approximately same.

5.1.2 Results

Lower frequency resolution

Several experiments have been carried out to study the effect of decreasing N and H.
With a constant overlap of 50%, N was lowered to 1/2 and 1/4 of the original window
size. This way, the frequency resolution is halved, but the time resolution is doubled. The
results are given in Table 5.1. The changes have a negative effect on performance.

One could argue that the parameters governing the number of landmarks should be
adapted to the new spectrum size. Note that even though the target peak density may
appear to doubled because of the smaller hop size H, it is not, as only half the number of
bins remain. However, the masking skirt has been optimised to have a deviation dev of 30
bins in either direction from each found peak. This way it may span the whole spectrum
of only 64 bins. For this reason, extra experiments were performed with adapted dev
and dens parameters, preserving the amount of masking but reshaping the masking skirt.
They appear as the the last two entries in the table.

The performance measures give an indication of how well samples are recognised, but do
not reflect which samples are recognised best. A spreadsheet was created to keep track of
all samples retrieved as top 1, in all the experiments performed from this chapter on. The
following remarks summarize the most important findings on the recognition coverage in
this section’s experiments.

Experiments lowering the frequency resolution:

New samples retrieved by the best performing experiment: 3
New samples retrieved in the whole experiments series: 6
New transposed samples retrieved: 2
New drum samples retrieved: 0
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NW HW ppp dens dev SR N(ms) H(ms) MAPn MAPa

12 6 10 36 30 8000 64 32 0.133 0.118
12 6 10 36 30 4000 128 64 0.203 0.190
12 6 10 36 30 4000 64 32 0.193 0.193
12 6 10 36 30 2000 256 128 0.133 0.144
12 6 10 36 30 2000 128 64 0.218 0.228
12 6 10 36 30 2000 64 32 0.162 0.176
12 6 10 36 30 1000 256 128 0.131 0.131
12 6 10 36 30 1000 128 64 0.201 0.218
12 6 10 36 30 1000 64 32 0.151 0.176

Table 5.2: Results of experiments varying the sample rate SR. Where possible, N and H
were varied to explore the new trade-off options between frequency and time resolution.

Downsampling

Experiments have then been carried out to study the effect of decreasing the sample rate
SR. It was lowered to 1/2 and 1/4 of the original window size. The results are given
in Table 5.2. Lowering the sample rate comes with a loss of information, resulting in a
number of trade-off options between frequency and time resolution. Some of these (N,H)
options were tested as well. The changes have a positive effect on performance.

Experiments lowering the sample rate:

New samples retrieved by the best performing experiment: 7
New samples retrieved in the whole experiments series: 14
New transposed samples retrieved: 0
New drum samples retrieved: 5

5.1.3 Discussion

A modest attempt is made to study the possibility of moving towards a landmark-based
fingerprinting system with reduced frequency resolution but increased time resolution, in
order to fingerprint percussive sounds. As it is implemented here, the strategy does not
seem promising. Performance was lower, and no new drum samples were found. The
recognition of a small number of new samples has been observed but their number is too
low to conclude that their identification can be attributed to the novel strategy.

This being said, it is worth noting that two transposed samples were correctly retrieved.
Both samples have been transposed one semitone down and appear to be a corresponding
6% slower than their original, suggesting they have been repitched. A possible ‘explana-
tion’ is that the matching landmarks originate in the lowest frequency range. Sinusoids
in the lowest 10 or so bins may be mapped to the same bin under a transposition of only
6%, and the lower the frequency resolution, the higher the central frequency of this 10th
bin.
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An attempt has also been made to investigate the effect of lowering the sample rate. The
strategy is more promising than lowering the frequency resolution. The best performing
configuration of parameters involves a sample rate of SR = 2000 Hz, and FFT parameters
N = 128 and H = 64 ms. It achieves a mean average precision of 0.218, significantly better
than the best-so-far MAP = 0.133 (both using distance dn).

Note that downsampling discards information. The optimised FFT parameters reflect this:
they correspond to a comprimise between frequency loss and time resolution loss: the 128
point positive spectrum is smaller than the one used in Chapter 4, and the frame rate
(16 Hz) is halved as well. Experiments in which either of the resolutions were conserved
performed worse.

A thorough explanation for the enhanced performance would require many more tests.
The loss of information has a large variety of implications. It affects, amongst others, the
amount of information (or entropy) in the landmarks, the resolutions in terms of bin width
and frame rate, and the masking procedure in the peak selection. Trying to explain the
performance increase in terms of all these aspects is not in the scope of the experiments.
Instead, this section is round up concluding that:

1. Fingerprinting audio at a lower sample rate has been found to increase the perfor-
mance of the fingerprinting system significantly.

2. Time and frequency resolution is lost but a satisfying trade-off in this loss has been
found.

5.2 Constant Q Landmarks

5.2.1 Motivation

A completely different, but common way to analyse spectral information is to study it in
terms of logarithmic frequency. A logarithmic division of the frequency axis is used in the
constant Q transform (see section 2.1.2) and equal-tempered PCP’s (see for example [33]
in section 2.3.1), or as a cepstrum representation in LFCC’s (same example). Haitsma
[30], as said in section 2.4.3, represents the signal as energies in a series of logarithmically
spaced bands.

A logarithmic division of the frequency axis has proved useful because it reflects the
behaviour of the HAS. The general perception of frequency operates on approximately
logarithmically spaced bands [30]. On the finer scale, it suits the geometric spacing of
the frequencies of tones in Western scales [29]. The constant Q transform has also proved
useful outside of fingerprinting, for example in detection of musical key [45].

In the context of this research, the constant Q transform instead of the STFT serves in
the first place as another reorganisation of the frequency resolution to investigate. The
approach is tested in the following set of experiments.
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NW HW fmin bpo SR N(ms) H(ms) MAPn MAPa

12 6 32 32 8000 64 32 0.172 0.164
12 6 32 32 8000 128 64 0.211 0.170
12 6 32 32 8000 256 128 0.175 0.163
12 6 32 32 8000 128 64 0.211 0.170
12 6 32 32 4000 128 64 0.213 0.195
12 6 32 32 2000 128 64 0.144 0.151
12 6 32 24 8000 128 64 0.197 0.182
12 6 32 32 8000 128 64 0.211 0.170
12 6 100 48 8000 128 64 0.150 0.151

Table 5.3: Results of experiments using a constant Q transform to obtain the spectrum.
Three different FFT sizes, three different samplerates and three different resolutions bpo
have been tested.

5.2.2 Methodology

The constant Q algorithm used was implemented by Ellis1 [32]. It computes a short term
constant Q transform with the parameters listed in section 2.1.2, returning a matrix with
columns of length K, where K is the number of geometrically spaced frequency bins. A
good resolution (almost 3 bins per semitone) could be combined with a broad frequency
range (almost full) by initially setting fmin = 32 and bpo = 32 and restoring SR = 8000.

5.2.3 Results

In a first series of experiments the effect of using this constant Q transform was tested
with three different FFT sizes N and a constant overlap, analog to the experiments in
section 5.1. This was done to find a compromise between loss of time resolution and
blurring of the lowest frequencies. The latter is significant if the default N = 64 ms is
used. In a second series of experiments similar to the one in section 5.1.2, the sample rate
was then lowered to see if a similar increase in performance could be observed. In a last
series, the experiment is rerun with 2 (bpo = 24) and with 4 (bpo = 48) bins per semitone.
The experiments are summarised in Table 5.3.

5.2.4 Discussion

The results are promising. A good MAP of 0.21 is obtained for SR = 4000 Hz and
8000 Hz. Though close, it is not better than the best MAP so far (regular landmarks at
SR = 2000; MAP = 0.22). In terms of retrieval, most of the samples are the same. All
new correct retrievals are untransposed samples and the large majority is tonal. Again,
the experiment is not a complete optimisation. Some parameters were not tested. Yet

1http://www.ee.columbia.edu/ dpwe/resources/matlab/sgram/
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a fair effort has been done to identify the most important ones and briefly study their
influence.



Chapter 6

Fingerprinting Repitched Audio

No strategies to recognise transposed and time-stretched samples have yet been explored.
In this chapter, two possible approaches are presented. However, they are limited to
the identification of samples that were time-stretched and transposed by changing its
playback speed, i.e. their pitch and tempo are changed by the same factor. This form of
transposition will be referred to as ‘repitching’. The restriction is based on the historical
development (see section 1.2.2) of samplers and is partly confirmed by observations made
in the ground truth database. A majority of samples in the database seems to show that,
if the pitch is changed, tempo is changed accordingly. However, this is hard to verify
exactly, especially for samples without a clear pitch.

6.1 Repitch-free Landmarks

6.1.1 Methodology

The first strategy consists of using the landmark-based system, but proposes a significant
change to the hashing and matching steps. The observation from which it starts is that,
in an ideal time-frequency space, time values and frequency values are scaled inversely
under a repitch transformation. If time values increase (the sample expands), frequencies
and frequency differences go down. Hence, any product of one time and one frequency
value will remain the same.

Landmarks as Previously Defined

Recall that a landmark is defined as

L = {t1, f1, f2, ∆t}.
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Its hash is then computed as

h = f1 · 2(m+n) + ∆f · 2n + ∆t

with ∆t = t1−t2 and m and n the number of bits needed to store ∆f and ∆t, respectively.
The resulting number is used to point to the location where {IC} is stored, a set of integers
containing t1 and the numeric song identifier s for all songs sharing a landmark with this
hash.

Recall also that, as explained in section 2.4.5, matching a query landmarks against the
database consists of finding the most frequent time offset τ in the collection of database
landmarks with the same hash.

τC = mode {t1C − t1}

where t1 is extracted from the query and t1C is retrieved from the database.

Repitch-free landmarks

The above considerations on the invariance of time and frequency products suggest a new
type of hash that could be robust to repitching:

h = (f1 ·∆t) · 2n + (∆f ·∆t) (6.1)

in which n is now the number of bits needed to store the last product. Note how the same
three landmark properties (f1,∆f,∆t) are used. The time value has to be used twice
for complete invariance. Clearly, the matching stage will have to adapt as well, τ is not
invariant to re-pitching. Analogue to the redefinition of the hash, τC can be redefined as

τC = mode {t1C ·
∆t

∆tC
− t1}. (6.2)

where again ∆t is extracted from the query and ∆t1C is retrieved from the database. This
formula is derived in Appendix A. A new type of landmark can now be defined to contain
both products needed for the hash, and the values needed to compute τ . Note that only
the last two are the invariant elements.

M = {t1, ∆f, (f1 ·∆t), (∆f ·∆t)}. (6.3)

Hash Size and Entropy

An efficiency issue arises from this definition. The proposed hash will be several times
greater than the original, while its entropy goes down. Indeed, the associativity of the
product will map unrelated (f, t) pairs to the same (f · t) value. When the entropy in a
fingerprint is too low, there will be a risk of retrieving false positives. Extracting more
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landmarks per song could be a way to maintain the fingerprint entropy even though the
hash entropy goes down, but either way the result is a very inefficient representation. For
example, without any adaptations and with the default settings for f and t, the hashtable
would become 16 times bigger, easily exceeding the size of the largest matrix storeable in
the RAM of an average computer.

Information science provides ways to code messages in an economic manner, where coding
efficiency is expressed with respect to the total information contained in the message.
This value, expressed in bits by the Shannon entropy, is the theoretical lower limit for the
message length (also in bits). Regarding the hashing issue, this means it should be feasible
to reduce the hash size to a value on the order of the Shannon entropy. As an example,
f1,∆f and ∆t could be stored separately, just like it is done in the landmark system.
Indeed, for uniformly distributed and independent random integers this will minimize the
length of h to its limit.

However, in the proposed strategy, the products are crucial. One straightforward way
to reduce the hash size is to map the products to an new alphabet (of integers) that
represents only products that can actually occur. This excludes, for example, all prime
numbers higher than the highest possible value of f and t. It is clear that this mapping
cannot be done analytically, the alphabet has to be constructed by computing all possible
products. Though once this is done, it is observed that for realistic ranges of f and t the
mapping allows for a reduction of the hash by at least one bit in each product, or 75% for
the entire hash.

Implementation

The proposed changes to the landmark-based fingerprinting system are implemented. The
proposed strategy requires a linear spacing of the frequencies, so it starts from an STFT-
based spectrogram instead of the constant Q-based one used in the last section. The
changes that had to be made to the system are illustrated in the block diagram in Figure
6.1. The implemented repitch-free landmarks were named ‘milestones’ to avoid confusion.

1. A new component landmark2milestone converts sequences of extracted landmarks
{L} to sequences of milestones {M} as defined by equation 6.3.

2. The hashing function landmark2hash is replaced by milestone2hash, implementing
equation (6.1).

3. The matching function get_hash_hits is adapted to implement equation (6.2).

In addition to this, the implementation provides the possibility of searching for landmarks
similar to the ones retrieved. The set of three-dimensional hash components (f1,∆f,∆t)
of the query can be expanded in one, two or three dimensions by setting the expansion
dimension X to 1, 2 or 3. Expansion here means that a deviating copy of the landmark
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Figure 6.1: Block diagram overview of the adjusted landmark fingerprinting system as
described in section 6.1. Each block represents a Matlab function of which the function
should be clear by the name. The red blocks are new.

is made for every neighbouring integer value in that dimension. The result is that the
landmarks extracted from the query audio will be duplicated 3X times.

The inclusion of similar hashes in the search process is provided as an attempt to predict
the effect of rounding time and frequency values to discrete frames and bins. The way
frequency values are rounded to bins (i.e. up or down) might differ before and after
repitching.

6.1.2 Results

A series of experiments has been done to assess the feasibility of this repitch invariance,
but only the best one will be reported here. For this experiment all parameters except
X carry over from the tests with regular landmarks. The repitch-free landmarks were
evaluated using the most promising configuration found so far, so sample rate SR = 2000
Hz was used. A MAP of 0.218 is achieved with this configuration.

The effect of including similar landmarks is studied next. Table 6.1 lists the results. In the
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NW HW SR N(ms) H(ms) X MAPn MAPa

12 6 2000 128 64 0.218 0.218
12 6 2000 128 64 1 0.218 0.198
12 6 2000 128 64 2 0.218 0.174
12 6 2000 128 64 3 0.218 0.145

Table 6.1: Results of experiments with the repitch-free landmarks. In the three last
experiments, the extracted landmarks were duplicated 3X times and varied in an attempt
to predict rounding effects.

three last experiments, the extracted landmarks were expanded in the three dimensional
‘hash space’ by various amounts, choosing X = 1, 2 and 3. This inclusion of similar
subfingerprints has a negative effect on performance.

6.1.3 Discussion

The highest performance is not far from the 0.228 reference (the MAP obtained with
regular landmarks and the same extraction parameters). This is promising, but also
expected: the majority of matching landmarks will still match after conversion to repitch-
free landmarks or ‘milestones’. A more important observation is that no new samples are
retrieved. Two new samples that weren’t correctly identified by the reference experiment
are now retrieved top one, but both of them were identified in similar experiments before,
and both are untransposed.

The low performance can have several causes. For example, the selection of peaks and
pairs is a complex process and is expected to be similar for similar audio, e.g. sounds
that have undergone filtering and the addition of noise. In the case of repitched audio,
the spectrum of query and matching candidates differ in a much more nonlinear way.
Perhaps the landmark extraction algorithm responds in an equally nonlinear manner,
thus extracting radically different landmarks.

However, another flaw in the strategy was found that can be shown to play a major
role. For corresponding, repitched landmarks LA and LB in a high resolution time-
frequency space, the products (∆fA ·∆tA) and (∆fB ·∆tB) can differ slightly because of
the rounding of times and frequencies to frames and bins. Though in a spectrum where
the resolutions are rather low, as is the case, their difference is significant. The prediction
of rounding errors as provided with parameter X is far not enough to account for the
observed deviations.

Accuracy in the Product Space

As an example, consider the following landmark extracted 76.8 seconds into a song C,
with H = 64 ms and time and frequency constraints ∆tmax = 63 and ∆tmax = 31.
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LC = {1200, 25, 40, 45}.

The products in the hash would then become

P1C = f1C ·∆tC = 25 · 45 = 1125
P2C = ∆fC ·∆tC = 15 · 45 = 675

Suppose the same landmark appears in the query Q that samples song C, but the sample
has been repitched 2 semitones or 12.25% up.

f1Q = [1.1225 · 25] = 28
f2Q = [1.1225 · 40] = 45

∆tQ = [45 / 1.1225] = 40
∆fQ = 45− 28 = 17

LC = {80, 25, 28, 40}.

Where the square brackets denote rounding to the nearest integer. The products in the
hash for the query would then become

P1Q = f1Q ·∆tQ = 28 · 40 = 1120
P2Q = ∆fQ ·∆tQ = 17 · 40 = 680

The difference between candidate and query is 5 ‘framebins’ in every product, or a devi-
ation of 0.45% and 0.74%, respectively. In order to be able to include these deviations in
the same hash, a tolerance on the order of 5 framebins would be needed. This may not
seem much, but it means the entropy in each product would be 5 times lower. Moreover,
it can be shown that for the majority of landmarks with this resolution, a margin of 5
would not even be enough. A calculation over a large and uniform sample of possible
landmarks and repitch factors (up to 3 semitones) shows a median difference of 12 and 6,
respectively.

Locality Sensitive Hashing

One could implement a simple form of Locality Sensitive Hashing (see section 2.3.1) to
account for these deviations, for example by partitioning the ‘two products’ space P1×P2

into 12 × 6 boxes. For a maximum P1 and P2 of 8192 and 4096, this would yield less
than 500,000 possible hashes, and that does not even account for the redundancy in ∆t
(as it is used twice). A logarithmic partitioning of the two products space based on
median percentual deviations rather than differences, gives more or less the same number
of possible hashes. The observed deviations of 0.8% and 1.8% require the number of
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logarithmically spaced boxes to be lower than 530,000. Coming from the 33 million hash
combinations in the previous experiment, this corresponds to a loss of 6 bits of precious
entropy to preserve only half of the landmark (as the median was used to assess deviations).

Solutions to this issue may exist. Perhaps settling with a lower entropy and moving some
of the discriminative power to the matching of τ , exploiting correlation of deviations
between the two products, or designing another LSH strategy could solve some of the
problem. Concerning the research done for this report, it has been decided that this
strategy is not promising enough to be investigated further. The next experiments focus
on the implementation of a more pragmatic method to search for repitches.

6.2 Repitching Landmarks

An attempt to design repitch-invariant landmark-like subfingerprints has not been suc-
cesful. One method to search for repitched audio that is very straightforward and has
been left aside up to this point, consists of repitching the query audio for several repitch
amounts R and computing a combined distance matrix containing for every (Q,C) pair
the lowest distance over all R. This strategy will be explored in the present section. First,
however, a pragmatic method is proposed to handle small repitch amounts without hav-
ing to repitch the audio itself. This way, a set of repitch factors can be scanned through
without systematically overlooking all values in between.

6.2.1 Methodology

Repitching landmarks

Small repitch amounts may be dealt with by predicting the way a landmark will change un-
der repitching with a certain factor r. Deviating landmarks predicted from those extracted
from the query are included in the database matching. The following very straightforward
computation shows how predictions can be calculated from an extracted landmark LQ for
a series of small repitch factors {r} (for example all 1 cent apart1). For every r:

f1r = [r · f1Q]
f2r = [r · f2Q]

∆tr = [∆tQ / r]
(6.4)

However, if the spectrogram from which the landmarks are extracted is computed using the
constant Q transform, which features logarithmically spaced frequencies k, the mapping
in equation 6.4 changes to:

k1r = [f1Q + log2(r) · bpo]
k2r = [f2Q + log2(r) · bpo]

∆tr = [∆tQ / r]
(6.5)

1A cent is 1/100 of a semitone, or a relative frequency difference of 0.06%



68 CHAPTER 6. FINGERPRINTING REPITCHED AUDIO

where bpo was the constant Q transform’s number of bins per octave.

As a consequence, the landmark component ∆k = k2−k1 is always unchanged under this
transformation. This is an advantage: it reduces the number of hash dimensions in which
the landmarks are expanded, so that less deviating copies of the query’s landmarks have
to be made.

The predictions described above are calculated in the Matlab function tool_stretch,
which is newly implemented and called by match_query. Its parameters are rmin and
rmax and, given a set of extracted landmarks, it returns all unique predictions (no exact
duplicates).

Repitching query audio

Larger amounts of repitch will be dealt with by repitching the query audio several times
and performing a complete experiment involving all queries for each of these repitches. The
repitching of the audio is performed by a new function repitch calling Matlab’s resample
algorithm. This requires the resample amount R in semitones (st) to be translated to an
integer upsample and downsample factor P and Q, where

log2(R/12) ≈ Q/P

as there are 12 semitones in an octave, and repitching audio up requires a lower samplerate.
The optimal factors P and Q are found using Matlab’s rat function with precision 0.006,
or one cent.

In the results below, parameters Rmin, Rmax and ∆R are used to describe how many
experiments are performed. Within every experiment, rmin and rmax can then be chosen
to cover the repitch factors between the R. Note that complete coverage requires

rmax − rmin ≥ log2(∆R/12).

As said in the beginning of this section, the distance matrices returned by every experiment
are combined by taking for every (Q,C) pair the lowest distance over all R. From the
resulting matrix, the MAP is computed to assess performance.

6.2.2 Results

A first experiment features no repitching of the audio itself (R = 0 st). Though with
rmin = 0.972 and rmax = 1.029, or half a semitone up and down, the performance of the
constant Q-based landmark system could be increased from MAP = 0.211 to 0.288, a
very significant improvement.

A second set of experiments covered repitches from −2 to +2 semitones with a step of
∆R = 1 semitone. To have complete coverage, (rmin, rmax) was again chosen (0.972, 1.029).
The obtained MAP is a best-so-far 0.341.
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SR Rmin Rmax ∆R rmin rmax MAPn MAPa

8000 0 0 0 0 0 0.211 0.170
8000 0 0 0 -0.5 0.5 0.268 0.288
8000 -2 +2 1.0 -0.5 0.5 0.341 0.334
8000 -2 +2 0.5 -0.5 -0.5 0.373 0.390

Table 6.2: Results of experiments using repitching of both the query audio and its ex-
tracted landmarks to search for repithed samples.

Drum samples Tonal samples Total
Repitched samples 5 (1) 3 (0) 8 (1)
Non repitched samples 4 (4) 17 (9) 21 (13)
Total 9 (5) 20 (9) 29 (14)

Table 6.3: Sample type statistics for the 29 correct matches retrieved by the best per-
forming system and the 14 correct matches of a reference performance achieved using
untransposed constant Q-based landmarks (in parentheses).

The third set of experiments involved some overlap in the coverage: ∆R was halved to
0.5 semitones, adding a number of new experiments to the previous set, with the same
(rmin, rmax) but non-integer R. The results were better (MAP = 0.391) at the cost of
doubling the total computation time.

Experiments with repitched queries take several hours for every R, so the number of
experiments that could be done was limited. Details for all three series of experiments
are given in Table 6.2. These results are now discussed.

6.2.3 Discussion

The best performing system achieved MAPs of 0.373 and 0.390. A record 29 of the 76
queries retrieve a correct first match. This is indeed a great improvement over the previous
best system, which reached MAPs of 0.211 and 0.170.

Every of the 29 correct best retrievals was now checked to see if it was a drum sample
or a tonal sample (which includes the drum samples with tonal elements) and whether or
not its was repitched (or perhaps time-stretched in the case of drum samples, for which
the difference is difficult to perceive). Table 6.3 lists these data. The numbers in the
parentheses are for the reference experiment involving untransposed constant Q-based
landmarks (achieving the MAP of 0.211).

Even with 29 matching queries, the conclusions drawn from these statistics will be relative.
The general statistics of the database that would be needed to situate these numbers are
unknown, especially when it comes to drum samples. However, it is safe to say that:

1. An additional number of unrepitched, tonal samples were retrieved, even though the
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experiment was not set up for this. This could be a result of the multiple searches
with each query, or of the inclusion of deviating landmarks, amongst many others.

2. Both repitched samples, and unpitched drum samples have now been successfully
recognised, thus accomplishing the main goal of the Chapters 5 and 6.

3. It remains hard to tell if the degree to which drum samples could be fingerprinted
meets the requirement an automatic hip hop sample detection system should meet.

Despite the last point, the MAP of almost 0.4 is remarkable for a first attempt at the
proposed task of automatic sample recognition.



Chapter 7

Discussion and Future Work

In this last chapter, findings and results from all chapters are summarised. This leads to
some conclusions and prospects for possible future work.

7.1 Discussion

7.1.1 Contributions

This is the first research known to address the problem of automatic sample identification.
As a result, a summary of this thesis’ contributions can include the problem statement
itself, though not without a thorough overview of the particularities of sampling as listed
in Chapter 1. To summarise, this thesis has achieved the following objectives.

1. The problem of sample identification as a music information retrieval task has been
defined and situated in the broader context of sampling as a musical phenomenon.
This includes listing the requirements a sample recognition system must meet:

• Given a music collection, the system should be able to identify known, but
heavily manipulated query audio.

• The system should be able to do this for large collections (e.g. over 1000 files).

• The system should be able to do this in a reasonable amount of time (e.g. up
to several hours).

2. The most relevant research to date has been brought together and critically reviewed
in terms of these requirements. The main challenge amongst the above requirements
has been identified as:

• Dealing with timestretching and transposition of samples

• Dealing with non-tonal samples

71
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3. A representative collection of hip hop sampling examples has been assembled and
annotated with relevant metadata. This dataset, together with a number of proposed
evaluation metrics and their random baselines described in Chapter 3, is a valuable
contribution that can definitely be re-used in future work on the topic. The random
baseline of the MAP evaluation metric was found to be 0.017 (over 100 iterations).

4. A promising state-of-the-art audio fingerprinting algorithm has been optimised and
tested in Chapter 4, to set a state-of-the-art baseline for the evaluation. It has
been found to perform poorly, but several times better than the random baseline:
MAPn = 0.147, MAPn = 0.128.

5. A selection of possible approaches to automatic sample identification has been inves-
tigated in Chapters 5 and 6. The most promising approach performed several times
better than the state-of-the-art algorithm: MAPn = 0.373, MAPn = 0.390. This
is a remarkable performance for a first attempt at a difficult and newly proposed
task.

The best achieved performance is obtained using the last of the proposed strategies. It
involves the extraction and matching of landmarks as proposed by Wang [3], but defines a
new type of landmarks, and adopts a combined strategy of audio repitching and fingerprint
variation to obtain a certain degree of robustness to repitching. The most important
findings are the following:

• Exploiting the interdependence of time-stretching and transposition in repitched
audio segments to represent them in a repitch-independent way requires a large
resolution of the spectrogram. The idea as it was implemented could not provide
enough entropy from realistic time and frequency resolutions.

• Lowering the sample rate at which the audio is analysed, and using a constant Q
transform to obtain a log frequency spectrogram of the processed audio segments
(instead of a linear frequency spectrogram) were both found to increase the system’s
performance.

• Calculating repitched versions of extracted landmarks allows for retrieval of slightly
repitched samples. Meanwhile, repitching query audio several times proved com-
plementary to this repitching of extracted landmarks and allows for the retrieval of
samples featuring a broader range of repitch amounts.

7.1.2 Error Analysis

As explained in section 6.2.3, an exhaustive error analysis is difficult to perform because
several required statistics were not annotated. Every sample indicates if a beat or a riff
was sampled, but for a critical look at retrievals, this is not enough; beats may still contain
significant tonal elements. In the same way, there is no information on how many of the
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beats appear isolated. Finally, the amount of time stretching and transposition of samples
is not annotated and often difficult to assess. As a result, no conclusions can be made
on why the non-recognised samples are not retrieved. However, a few hypotheses can be
stated:

• The samples that have not been retrieved appear underneath many layers of other
musical elements. It has not been observed that all retrieved samples were especially
isolated or high in the mix.

• No strategy has yet been considered to detect samples that were times-stretched
and transposed independently. At least a few of the samples in the database feature
this kind of transformation.

• For some files, more landmarks were extracted than for others. This has been
observed but never closely studied. Perhaps the amount of extracted samples made
some files more difficult to retrieve.

7.1.3 Critical Remarks

An acceptable degree of performance has been reached, considering this is the first time
the task is addressed. Yet, the results could have been better. A number of critical
remarks can be made regarding the extent of the contributions listed above.

1. Only less than half of the queries in the database retrieved a correct candidate
first. A large number of samples are still unidentified, and no particular reason for
this stands out. Especially the system’s performance recognising drum samples is
difficult to judge.

2. Not all parameters of the system could be optimised, because of constraint in both
time and computational resources. Even the parameters that have been optimised
in Chapter 4 are perhaps far from optimal in the modified system of Chapter 6. The
performance of the system proposed last may be increased significantly if another
optimisation were performed.

3. The collection that was used to evaluate was limited. Any real-life music collection
that would be used in a computational ethnomusicological study of sampling would
exceed the used collection several times in size. The discriminative power may
decrease in such a context, and noise matches from unrelated files may play a larger
role.

7.2 Future Work

The research done in this thesis is mostly an exploration of a selection of strategies to
address the newly defined problem of automatic sample detection. One big question has
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been asked, but only small answers are given. Many more approaches could and should
be investigated.

Within the problem of sample identification, particularly interesting issues that may be
further addressed are:

• Can a system be implemented to perform the proposed task with a accuracies com-
parable to previously achieved in audio fingerprinting and currently achieved in cover
detection?

• How can percussive sounds be reliably fingerprinted? The challenges that come
with the fingerprinting of these sounds may be of a whole other kind than those
emphasised on in this thesis.

• Are there other types of samples that are particularly challenging to identify? An
extension of the annotations in the music collection could help identify more specific
problems within the task.

• The identification of independently time-stretched and transposed samples. No
strategy that could do this has been presented so far.

On a bigger scale, it could be interesting to:

• Investigate if the way an automatic system could identify samples, reflects any of
the mechanisms humans use to recognise familiar music excerpts. Do parallels with
music cognition exist?

• Identify and analyse common properties of the different styles and types of fragments
that have been sampled. Is there such a thing as the sampleability of a piece of
music?

• Embed the identification of sampled audio in a larger study of re-use of musical
ideas. How do musical ideas propagate through time, and does sampling contribute
to this?

Hopefully this thesis can be a part of a new interesting line of research within Music
Information Retrieval.



Appendix A

Derivation of τ

Prior to the repitch, the time offset between candidate and query τ was defined as

τ = t1C − t1.

This relation is now broken by the introduction of a repitch factor r scaling the candidate’s
timestamp t1C :

τC = r · t1C − t1.

The same goes for the candidate time difference ∆tC and frequency difference ∆fC .

∆t = r ·∆tC
∆f = ∆fC / r.

To obtain τ , the repitch factor r can then be obtained by substitution of r

τ = t1C ·
∆t

∆tC
− t1.

The same histogram plots as in Figure 2.7 can be used to find the winning offset.
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Appendix B

Music Collection
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Artist Title Year Genre
T001 OC Time’s Up 1994 Hip-hop
T002 Les Demerle A Day in the Life 1968 Jazz
T003 David Axelrod Holy Thursday 1968 Jazz
T004 Lil Wayne Dr. Carter 2008 Hip-hop
T005 Clyde McPhatter Mixed Up Cup 1970 R&B/Soul
T006 Common In My Own World (Check the

Method)
1994 Hip-hop

T007 Monty Alexander Love and Happiness 1974 Jazz
T008 The Beatnuts Let Off a Couple 1994 Hip-hop
T009 Beastie Boys Rhymin & Stealin’ 1986 Hip-hop
T010 Led Zeppelin When The Levee Breaks 1971 Rock
T011 Bill Withers Grandma’s Hands 1971 R&B/Soul
T012 Blackstreet No Diggity 1996 Hip-hop
T013 Jay-Z Roc Boys (and the Winner is) 2007 Hip-hop
T014 Menahan Street Band Make the Road by Walking 2006 World
T015 Lou Reed Walk on the Wild Side 1971 Rock
T016 A Tribe Called Quest Can I Kick it? 1990 Hip-hop
T017 House of Pain Jump Around 1992 Hip-hop
T018 Bob & Earl Harlem Shuffle 1963 R&B/Soul
T020 Will Smith Miami 1997 Hip-hop
T021 The Whispers And the Beat Goes On 1980 Disco
T022 Asheru ft. Talib Kweli Mood Swing 2002 Hip-hop
T023 Duke Ellington and

John Coltrane
In a Sentimental Mood 1963 Jazz

T024 Wu-Tang Clan C.R.E.A.M. 1993 Hip-hop
T025 The Charmels As Long as I’ve Got You 1967 R&B/Soul
T026 Beastie Boys Rock Hard 1985 Hip-hop
T027 AC/DC Back in Black 1980 Rock
T028 Wu-Tang Clan Tearz 1993 Hip-hop
T029 Wendy Rene After Laughter (Comes

Tears)
1964 R&B/Soul

T030 Non Phixion Rock Stars 2002 Hip-hop
T031 Bar-Kays In the hole 1969 R&B/Soul
T032 A Tribe Called Quest

ft. Leaders of the New
School & Kid Hood

Scenario (Remix) 1992 Hip-hop

T033 The Emotions Blind Alley 1972 R&B/Soul
T034 Pete Rock & C.L.

Smooth
Straighten it Out 1992 Hip-hop

T035 Ernie Hines Our Generation 1972 R&B/Soul
T036 Big Daddy Kane Ain’t No Half-Steppin’ 1988 Hip-hop
T037 De La Soul Eye Know 1989 Hip-hop
T038 The Mad Lads Make This Young Lady Mine 1969 R&B/Soul
T039 Biz Markie Just a Friend 1989 Hip-hop
T040 Freddie Scott You Got What I Need 1968 R&B/Soul
T041 Killah Priest ft. Hell

Razah and Tekitha
One Step 1998 Hip-hop
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Artist Title Year Genre
T041 Killah Priest ft. Hell

Razah and Tekitha
One Step 1998 Hip-hop

T042 William Bell I Forgot to Be Your Lover 1968 R&B/Soul
T043 Otis Redding (Sittin’ On) the Dock of the

Bay
1968 R&B/Soul

T044 Wu-Tang Clan Protect Ya Neck 1993 Hip-hop
T045 The J.B.’s The Grunt 1970 R&B/Soul
T048 De La Soul Change in Speak 1989 Hip-hop
T049 Cymande Bra 1972 Funk
T050 The Mad Lads No Strings Attached 1969 Hip-hop
T051 Nas Memory Lane (Sittin’ in Da

Park)
1994 Hip-hop

T052 Lee Dorsey Get Out of My Life, Woman 1966 R&B/Soul
T053 Fat Joe Flow Joe 1993 Hip-hop
T054 Public Enemy Rebel Without a Pause 1987 Hip-hop
T056 Blowfly Outro 1973 Funk
T057 Jurassic 5 Quality Control 2000 Hip-hop
T058 David McCallum The Edge 1967 Classical
T059 Dr. Dre ft. Snoop

Dogg
The Next Episode 1999 Hip-hop

T060 Bobby Caldwell Open Your Eyes 1980 Jazz
T061 Common The Light 2000 Hip-hop
T062 Dido Thank You 2000 Pop
T063 Eminem Stan 2000 Hip-hop
T064 Eddie Holman It’s Over 1977 R&B/Soul
T065 Ghostface Killah &

RZA
Nutmeg 2000 Hip-hop

T066 Foreigner Cold as Ice 1977 Rock
T067 M.O.P. Cold as Ice 2000 Hip-hop
T068 Grace Jones Nightclubbing 1981 Disco
T069 Shyne & Barrington

Levy
Bad Boyz 2000 Hip-hop

T070 Hossam Ramzy Khusara Khusara 1994 World
T071 Jay-Z & UKG Big Pimpin’ 1999 Hip-hop
T072 Jack Mayborn Music People 1978 R&B/Soul
T073 Prodigy Keep it Thoro 2000 Hip-hop
T074 Jimmie & Vella

Cameron
Hey Boy Over There 1968 R&B/Soul

T075 Capone N’ Noreaga Invincible 2004 Hip-hop
T076 Raymond Lefevre &

His Orchestra
The Days of Pearly Spencer 1967 R&B/Soul

T077 Black Rob Whoa! 2000 Hip-hop
T078 Sam & Dave Soul Sister, Brown Sugar 1969 R&B/Soul
T079 M.O.P. Ante Up 2000 Hip-hop
T080 Solomon Burke Cool Breeze 1972 R&B/Soul
T081 Ghostface Killah &

Raekwon
Apollo Kids 2000 Hip-hop

T082 The Monkeys Mary Mary 1966 Rock
T083 James Brown Funky Drummer 1970 Funk
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Artist Title Year Genre
T084 Jay-Z ft. Alicia Keys Empire State of Mind 2009 Hip-hop
T085 Isaac Hayes The Breakthrough 1974 R&B/Soul
T086 NWA Straight outta Compton 1988 Hip-hop
T088 Funkadelic You’ll like it too 1981 Funk
T090 The Honey Drippers Impeach The President 1973 R&B/Soul
T091 Nice & Smooth Funky For You 1989 Hip-hop
T092 LL Cool J Around the Way Girl 1990 Hip-hop
T093 Kris Kross Jump 1992 Hip-hop
T094 Jackson 5 I want you back 1969 R&B/Soul
T095 Ohio Players Funky Worm 1972 R&B/Soul
T097 Naughty by Nature Hip Hop Hurray 1993 Hip-hop
T098 Five Stairsteps Don’t Change Your Love 1968 R&B/Soul
T099 A Tribe Called Quest Jazz (We’ve Got) 1991 Hip-hop
T100 Ice Cube A Bird in the Hand 1991 Hip-hop
T101 Southside Movement I been watchin’ you 1973 Funk
T102 Cormega American Beauty 2001 Hip-hop
T103 The Avalanches Since I left you 2000 Hip-hop
T104 Lamont Dozier Take off your make up 1973 R&B/Soul
T108 Gary Numan Films 1979 Rock
T109 DJ Qbert Eight 1994 Hip-hop
T110 Ghostface Killah &

RZA
The Grain 2000 Hip-hop

T111 Rufus Thomas Do the Funky Penguin 1971 R&B/Soul
T112 Rufus Thomas The Breakdown (part 2) 1971 R&B/Soul
T115 Salt-N-pepa I desire 1986 Hip-hop
T116 The Winstons Amen, Brother 1969 R&B/Soul
T117 7th Wonder Daisy Lady 1979 R&B/Soul
T118 Kanye West ft. Nas,

Really Doe
We Major 2005 Hip-hop

T119 Orange Krush Action 1982 Funk
T121 LL Cool J Breakthrough 1987 Hip-hop
T144 Beastie Boys Time to get Ill 1986 Hip-hop
T145 Barry White I’m gonna love you just a lit-

tle more baby
1973 R&B/Soul

T146 De La Soul De la Orgee 1989 Hip-hop
T147 Ras Kass Rasassination 1998 Hip-hop
T148 Johnny Pate Shaft in Africa 1973 R&B/Soul
T149 Jay-Z Show me what you got 2006 Hip-hop
T150 Cypress Hill Real Estate 1991 Hip-hop
T151 All The People Cramp Your Style 1972 R&B/Soul
T152 Nas One Mic 2001 Hip-hop
T153 Public Enemy 911 is a Joke 1990 Hip-hop
T154 Sound Experience Devil with the bust 1974 R&B/Soul
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Artist Title Year Genre
T157 Geto Boys Fuck a War 1991 Hip-hop
T160 Bobby Byrd I Know You Got Soul 1971 R&B/Soul
T162 Joe Tex Papa Was Too 1966 R&B/Soul
T163 Wu-Tang Clan Wu-Tang Clan ain’t nuthin ta

F’ wit
1993 Hip-hop

T164 EPMD Jane 1988 Hip-hop
T166 Nikki D Lettin’ Off Steam 1990 Hip-hop
T167 The Politicians Free Your Mind 1972 R&B/Soul
T172 3rd Bass Oval Office 1989 Hip-hop
T173 Joe Quarterman &

Free Soul
I’m gonna get you 1974 R&B/Soul

T176 Beastie Boys Egg man 1989 Hip-hop
T177 Curtis Mayfield Superfly 1972 R&B/Soul
T178 Crucial conflict Showdown 1996 Hip-hop
T179 Beastie Boys Brass Monkey 1986 Hip-hop
T180 Wild Sugar Bring it Here 1981 Disco
T181 The Notorious B.I.G. Respect 1994 Hip-hop
T182 KC & The Sunshine

Band
I Get Lifted 1975 R&B/Soul

T184 Nas Get Down 2002 Hip-hop
T185 The Blackbyrds Rock Creek Park 1975 R&B/Soul
T187 Erik B. & Rakim I Know You Got Soul 1987 Hip-hop
T189 NWA Fuck the Police 1988 Hip-hop
T190 Erik B. & Rakim Lyrics of Fury 1988 Hip-hop
T191 LL Cool J Mama said knock you out 1990 Hip-hop
T192 Public Enemy Welcome to the Terrordome 1989 Hip-hop
T193 Dyke & The Blazers Let a woman be a woman, let

a man be a man
1969 Funk

T199 James Brown The Boss 1973 R&B/Soul

Table B.1: All tracks in the database.
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C Q TC TQ N Comments
S001 T002 T001 0:00 0:00 19 chopped (sample ABCD looped

ABCBCBCD)
S002 T003 T004 0:00 0:00 4 intro
S003 T003 T004 0:34 0:53 3 refrain with horns
S004 T005 T006 0:00 0:37 60
S005 T007 T008 0:53 0:00 10 (very clean: same pitch and only

layer)
S006 T010 T009 0:00 0:01 37 probably samples both bars (with

two decks?)
S007 T011 T012 0:01 0:00 85 (sample a bit gated in the end)
S008 T014 T013 1:14 0:05 10 beginning of riff counted (rest

’chopped’)
S009 T015 T016 0:00 0:03 37 interpolation or other version
S010 T018 T017 0:00 0:00 1
S012 T021 T020 0:00 0:00 38 time sampled unclear (0:00 or 2:25?)
S013 T023 T022 0:01 0:10 51 piano
S014 T025 T024 0:00 0:21 37
S015 T027 T026 0:05 0:12 38
S016 T029 T028 0:00 0:37 50
S017 T031 T030 0:08 0:10 43 first half of loop
S018 T033 T032 0:01 0:18 217 (samples 2nd measure, hence short

and no melody)
S019 T035 T034 0:40 0:10 48 (vocals)
S020 T033 T036 0:00 0:02 33
S021 T038 T037 0:00 0:00 50 the guitar bar
S022 T043 T037 2:21 0:26 22
S023 T040 T039 0:00 0:02 21 interpolation
S024 T042 T041 0:00 0:04 40 the guitar bar
S025 T045 T044 0:00 0:39 67 very soft and hard to count
S027 T049 T048 0:00 0:09 25
S028 T050 T048 0:00 0:00 19 half samples not counted (second

halves)
S029 T052 T051 0:00 0:10 85 only the measures with single BD

counted
S030 T052 T039 0:00 0:13 76
S031 T052 T037 0:00 0:04 110 BD filtered out or replay
S032 T052 T053 0:01 0:20 147 HH filtered out or replay
S033 T045 T054 0:00 0:12 92
S035 T056 T057 0:03 0:06 44
S036 T058 T059 0:05 0:10 26 Short sample intro not counted
S037 T060 T061 1:03 1:03 3 vocals only
S038 T062 T063 0:35 0:01 5 refrain w/ vocals (long)
S039 T064 T065 0:25 0:22 157 the flute, verse
S040 T066 T067 0:07 0:18 34 both instr/vocal, instr parts

chopped?
S041 T068 T069 0:06 0:13 23 nice and long (11 seconds)
S042 T070 T071 0:00 0:00 38
S043 T072 T073 0:00 0:05 55 piano part
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C Q TC TQ N Comments
S044 T074 T075 0:07 0:08 79 Short, alternates full/half sample
S045 T076 T077 0:32 0:00 143 Only 8 note string riff counted
S046 T078 T079 0:04 0:02 151 Less than one second
S047 T080 T081 0:03 0:20 15 Only repetitions of string riff

counted
S048 T082 T048 0:02 0:00 68
S049 T083 T054 5:21 0:12 80
S050 T085 T084 0:01 0:00 45
S051 T116 T086 1:28 0:20 80
S052 T088 T086 0:01 2:59 3
S054 T090 T091 0:00 0:03 91
S055 T090 T092 0:00 0:00 101
S056 T094 T093 0:05 0:00 60
S057 T090 T093 0:00 0:00 150 half of the samples used in S054 and

S55
S058 T095 T093 2:18 0:00 40
S060 T098 T097 0:00 0:08 204 pretty short but ok
S061 T098 T099 0:00 0:11 150 Pretty short, only full cycles

counted
S062 T098 T100 0:00 0:05 100 pretty short but ok
S063 T101 T102 0:01 0:00 24
S064 T104 T103 0:01 0:15 96
S067 T108 T109 0:06 0:54 114
S068 T111 T110 0:00 0:15 55
S069 T112 T110 0:14 0:00 1
S071 T116 T115 1:28 0:07 82
S072 T117 T115 0:01 1:00 7
S073 T119 T118 0:05 0:00 139
S074 T085 T121 0:01 0:00 74 Perhaps chopped with compression

or gated reverb: different timbre;
Yet accurate pattern

S078 T145 T144 0:12 0:39 2
S079 T145 T146 0:01 0:00 22
S080 T148 T147 0:18 0:05 24
S081 T148 T149 0:18 0:13 15 end of loop doubled (not counted)
S082 T151 T150 0:06 1:54 7
S083 T145 T152 0:03 0:56 28
S084 T154 T153 0:18 0:00 54 LF only
S086 T154 T157 0:01 0:01 9 intro
S089 T160 T157 0:00 1:04 8
S091 T162 T163 0:00 0:17 3 HF only and soft
S092 T162 T164 0:08 0:07 53
S094 T167 T166 0:06 0:15 43 Bass + synth
S098 T173 T172 1:48 0:05 71
S101 T177 T176 0:00 0:00 27
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C Q TC TQ N Comments
S102 T177 T178 0:00 0:07 70
S103 T180 T179 0:01 0:01 12
S104 T182 T181 0:00 0:00 99
S106 T185 T184 0:00 2:15 8
S107 T083 T184 5:21 2:17 7
S109 T160 T187 0:00 0:09 77 might be 39
S112 T088 T187 0:01 0:00 21
S113 T083 T189 5:21 2:17 4 might be 2
S114 T083 T190 5:21 0:00 102
S115 T083 T191 5:21 0:11 112
S116 T193 T192 1:46 0:05 75 Beginnings counted
S120 T199 T184 0:05 0:02 71
S121 T064 T065 0:02 0:00 12 the intro/refrain riff
S122 T072 T073 0:04 0:32 5 brass part
S123 T062 T063 0:59 0:49 44 verse (very soft)
S124 T052 T051 0:01 0:13 80 only the measures with double BD

counted
S125 T042 T041 0:07 0:12 16 the guitar + strings bar
S126 T038 T037 0:04 0:52 10 the guitar + brass bar
S127 T031 T030 0:46 0:13 43 end of loop
S128 T029 T028 0:05 0:27 4 10 sec refrain
S129 T023 T022 0:11 1:24 2 saxophone
S130 T014 T013 1:08 0:00 1 intro not interpolated
S131 T003 T004 0:23 0:20 9 repeated beat (of which 3 included

in S2)
S134 T167 T166 0:02 0:25 14 just bass
S135 T199 T184 0:14 0:58 3 brass riff
S136 T199 T184 1:06 0:00 2 brass crescendo
S137 T173 T172 0:01 0:44 14

Table B.2: All samples in database
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