
Adding Dynamic Smoothing to Mixture Mosaicing Synthesis
Graham Coleman∗, Jordi Bonada∗, Esteban Maestre∗†

∗Music Technology Group
Universitat Pompeu Fabra, Barcelona, Spain

Email:graham.coleman@upf.edu, jordi.bonada@upf.edu
†Center for Computer Research in Music and Acoustics

Stanford University, Stanford, USA
Email: esteban@ccrma.stanford.edu

Abstract—Recent works in sound mosaicing synthesis [1], [2] have
proposed algorithms that permit instantaneous mixtures of several
sources atoms, based on sparse signal representation techniques. We
propose combining l1 regularization with linear dynamical smoothing
as in the Kalman filter (also in [3], [4]) to promote desired transitions
between atoms, while adapting the generic approach to the mixture
mosaicing context. Furthermore, we modify the dynamics cost slightly
to further promote sparse scores in the case of non-negativity. This is a
work in progress in which we can present some sound examples, but for
which the proposal is not fully validated.

I. INTRODUCTION

Mosaicing, a form of sample-based sound synthesis, consists in
transforming and compositing disparate source sound segments from
a database so that the result will match perceptual features (descrip-
tors) of a target sequence. Classical methods [5], [6] considered
matching a single source segment to a given target context (frame),
while more recent methods [1], [2] consider sparse mixtures of
multiple source segments at once.

Several criteria for these systems concern the dynamics–the
changes from frame to frame–of the composition, or more abstractly,
the sampling process that generates it. Do the descriptors of the
source units change too much from frame to frame (continuity)?
Do the transformation parameters applied to the sources change
rapidly from frame to frame (transformation continuity)? Does the
sampling process maintain a steady context within the source material
by choosing contiguous blocks of material from the original source
context, or does it jump around (contiguity)? By modeling dynamics
we can search or sample sequences or mixtures that have desired
properties above.

II. PROPOSAL

Given a matrix or linear operator D describing favored atom
transitions from state to state, one way of generalizing it to mixtures
of atoms is simply considering a form of linear dynamics where:
xt+1 = Dxt + wt. xt and xt+1 are mixture vectors for time steps
t and t + 1, wt represents innovation, or deviance from expected
dynamics.

Combining the smoothing version of the Kalman filter with an l1
regularization term as in Basis Pursuit Denoising (BPDN) would give
us the following program:

min
x

T∑
t=1

‖Axt− bt‖22+λ1

T∑
t=2

‖Dxt−1−xt‖22+λ2

T∑
t=1

‖xt‖1 (1)

Under the scheme given by Problem 2, if the transition matrix D
gives a number of possibilities for a given atom, the most likely suc-
cessor state (where the innovation cost is zero) will include nonzero
weights on all of those possibilities. Therefore, when D includes

many alternatives for transitions between atoms, the innovation cost
and the sparsity cost are working against each other.

In our application, where weights are constrained to be non-
negative, we propose modeling alternatives using an innovation cost
where only positive innovation is penalized, that is having no cost
when weights decrease (state is closer to sparsity than deterministic
dynamics). We implement this by introducing a non-negative dummy
variable y:

min
x

T∑
t=1

‖Axt− bt‖22 +λ1

T∑
t=2

‖Dxt−1−xt− yt‖22 +λ2

T∑
t=1

‖xt‖1

(2)
where both x and y are constrained to be elementwise non-negative.
In this scheme, successor states are not penalized for atom transition
alternatives not taken, only for unlikely transitions that are taken.

III. OTHER APPROACHES

Several other approaches are also likely feasible for encouraging
dynamics in synthesis. For one, we could extend the Kalman filter
objective with a nonlinear model, which may render the objective
function non-convex. In this case, heuristic methods based on convex
relaxation such as DC Algorithms (DCA) could be used to find
heuristic solutions quickly.

Sampling or Monte-Carlo approaches are also feasible. In partic-
ular, particle filters (Sequential Monte Carlo) have been used for
tracking, and allow both nonlinear dynamics, and use non-parametric
estimates for the states.

Finally, so called greedy signal decomposition methods could
perhaps be adapted to account for dynamics. In practice this would
be analogous to sampling in many ways. Perhaps a good example of
this in image synthesis would be Ashikhmin [7].
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