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ABSTRACT

Section linking aims at relating structural units in the notation of
a piece of music to their occurrences in a performance of the piece.
In this paper, we address this task by presenting a score-informed
hierarchical Hidden Markov Model (HHMM) for modeling musical
audio signals on the temporal level of sections present in a compo-
sition, where the main idea is to explicitly model the long range and
hierarchical structure of music signals. So far, approaches based on
HHMM or similar methods were mainly developed for a note-to-
note alignment, i.e. an alignment based on shorter temporal units
than sections. Such approaches, however, are conceptually problem-
atic when the performances differ substantially from the reference
score due to interpretation and improvisation, a very common phe-
nomenon, for instance, in Turkish makam music. In addition to hav-
ing low computational complexity compared to note-to-note align-
ment and achieving a transparent and elegant model, the experimen-
tal results show that our method outperforms a previously presented
approach on a Turkish makam music corpus.

Index Terms— Audio-to-score alignment, Section linking, Hi-
erarchical hidden Markov models, Turkish makam music

1. INTRODUCTION

The problem of relating sections in a performance to a notation is
closely related to a task commonly referred to as audio-to-score
alignment [1]. In audio-to-score alignment, the goal is to align
each time instance in a performance recording to a specific note
in a notation of the performed piece. Instead of such a detailed
alignment at the note level, section linking attempts to relate certain
important structural boundaries in a reference score of a piece to
their occurrences in the recording of the piece [2]. Concentrating
on the coarser section boundaries enables a computationally lighter
approach, yet section linking is a challenging problem when the
performances differ substantially from the reference score due to in-
terpretation and improvisation, which is very common, for instance,
in Turkish makam music. Section linking can be used to discover
music recordings in semantically meaningful and structured ways,
in applications, for instance, in music education or musicology.
Furthermore, it can be either regarded as a preprocessing step for
a subsequent finer note-to-note alignment, or even as a substitution
to it in cases where a lower-level alignment is hard to obtain in
presence of rich ornamentations and variations on the note-level.
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State-of-the-art approaches for audio-to-score alignment can be
roughly categorized into two classes. The first group approaches
the problem by means of Dynamic Time Warping (DTW), which
applies dynamic programming in order to minimize a matching
function between a score and a performance. Recently, such ap-
proaches were refined to cope with structural deviations from the
notation by the performer(s) [3]. The second group of approaches
tackle the problem using a probabilistic framework. In [4], a hidden
Markov model (HMM) is proposed, where the tempo and score
position are represented as latent variables, and the inference of the
tempo-dependent score position is performed using Viterbi decod-
ing. In [5], timed events are modeled using a hierarchical hidden
Markov model (HHMM) with notes as states. The duration of timed
events interacts with the estimation of the tempo that is preformed
by an oscillator based model. Inference in this model is performed
using causal inference, since the goal is real-time score following in
live performances. A perspective on audio-to-score alignment using
Conditional Random Fields is taken by the authors of [6]. They
propose models of various complexities, with the best-performing
model resembling a HHMM with the duration of note events influ-
enced by an additional tempo variable. Similar to [5], note events
are modeled as states with related duration variables. They propose
a set of observations that influence the various hidden variables
of the model, and suggest pruning methods in order reduce the
computational demands of exact inference in the models.

In this paper we present a score-informed hierarchical Hidden
Markov Model for modeling musical audio signals from a coarser
temporal level, where the main idea is to explicitly model the long
range and hierarchical structure of music signals. Since we aim to
link the scores and the performance in the section-level and not di-
rectly aim at a note-to-note alignment, we avoid modeling strategies
as presented in [5, 6] and come up with a computationally lighter but
precise model for section linking.

As for note-to-note alignment, section linking is applicable in
musical contexts that make use of notation. In the Music Informa-
tion Retrieval (MIR) literature, the context of alignment tasks has
predominantly been Eurogenetic classical and popular music. How-
ever, here, as in [2] we wish to focus on Turkish makam music. This
music, as we shall detail in the following section, deviates signifi-
cantly from the notation on the note level by introducing a manifold
of ornamentations. The large amount of ornamentations is likely to
cause problems for systems targeted at note-to-note alignment, since
they typically assume transitions from one note in the score to the
next, something that is frequently violated for Turkish makam music.
Hence, apart from reducing complexity and achieving a transparent
and elegant model, proposing a probabilistic approach for pursuing
alignment on a high level, section linking, is further motivated by ne-
cessity to ignore the rich ornamentations present in a performance.

The rest of the paper is structured as follows; Section 2 explains
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(a) The reference pitch with annotated sections.
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(b) Fundamental frequency estimations from performances of the same piece.

Fig. 1: Example from our corpus: Uşşak Saz Semaisi by Neyzen
Aziz Dede. Dashed vertical lines represent section boundaries.

the music collection used for evaluation and the applied preprocess-
ing steps. Thereafter, the model is introduced in Section 3, and the
experimental results along with the applied evaluation methods are
explained in Section 4. Section 5 concludes the paper.

2. MUSIC CORPUS

We derive the evaluation data used in this paper from the dataset de-
scribed in [2]. The evaluation data consists of 166 complete perfor-
mances of instrumental pieces from the Turkish makam repertoire.
For each performance a machine-readable notation is available from
the collection presented in [7]. In each notation, the onsets of sec-
tions in the compositions are annotated. Typically, the compositions
consist of four non-repeating sections called hane, with a repeat-
ing section referred to as teslim in between them. The notations are
strictly monophonic, and describe the core melody of the piece. The
performances containing more than one instrument, however, cannot
be considered as strictly monophonic but represent a typical example
of heterophony; usually one instrument takes a higher degree of free-
dom to ornament the basic melody. In pieces with one instrument,
the basic (notated) melody is enriched by using additional notes, too.
For this reason, the number of played notes is usually significantly
higher than the number of notes found in a score. While notation
in Eurogenetic music divides an octave into 12 equal steps, Turkish
makam music is commonly conceptualized with a division of the oc-
tave into 53 steps [8]. One of these steps is referred to as Holderian
comma (Hc), and the notation makes use of this resolution with the
tonic of the pieces notated as 0Hc.

As detailed in [8], a performance of a piece of Turkish makam
music makes use of one of 12 different transpositions, with the
choice of the transpositions depending on the preferences of the
musicians. For that reason the pitch of a note in the score is not
related to a unique frequency value in Hz. We apply a fundamental
frequency estimation proposed in [9] to the recording and convert
the frequency values in Hz to a Hc-scale, with the tonic frequency
again taking the value 0Hc. This way we eliminate the influence

of transpositions and ensure comparability with the notation. We
obtain the tonic frequency using the automatic approach presented
in [10]. An example piece from our corpus is shown in Figure 1. As
the figure demonstrates, the performances often differ significantly
from the reference score and from each other, making the linking
problem challenging.

It is important to point out here that other signal representations
such as Pitch-Class-Profiles are considered to be a more robust signal
representation for alignment tasks than features based on fundamen-
tal frequency estimation. However, in [2] it was shown that in the
targeted repertoire this does not hold, and for that reason we choose
the fundamental frequencies as our signal representations.

In the following sections, we will refer to the estimated fun-
damental frequencies in Hc as xn, with n being the index of the
analysis window of length 46.6ms, without overlaps between the
windows. The sequence of pitch values derived from the score is de-
rived at the same frame rate for compatibility. The annotations that
will be used for evaluation relate each section transition played in a
performance to a position in the score.

Typically a performance is not played at the tempo denoted in
the score. Therefore we apply a simple and accurate method to de-
rive an initial value for the factor to correct for the tempo deviation
between performance and notation. To this end, we follow [10] and
compute a point-wise distance matrix between the pitch values of the
initial 20% of the performance and the pitch values describing the
first section in the score. Since a performance usually starts with the
first section, this distance matrix will have some strong diagonal line
segments. These are then detected using a Hough transform as pro-
posed in [10], and the angle of the longest continuous line segment
is determined. From this angle we obtain a factor Fdur by which the
durations in the score are multiplied to arrive at an initial hypothesis
of the durations of the sections according to the performance tempo.
This hypothesis serves as a starting point for the model described in
Section 3.

3. THE MODEL

In this section, we present a novel probabilistic model for section-
level modeling of musical audio. Our aim is to infer the section
boundaries by making use of the score information. The main idea
in our model is to incorporate section-level sequential and hierarchi-
cal structure of music signals into a single dynamic Bayesian net-
work. We explicitly model different layers of the hierarchy by using
a HHMM. The proposed model is flexible and can be applied to a
wide range of musical genres.

We define the following discrete hidden variables:
• Section variable: sn ∈ {1, . . . , S}: represents all individual sec-

tions that are defined in the score, with S being the number of
sections in the score. In our corpus, the typical set of sections
is sn ∈ {1.HANE, 2.HANE, 3.HANE, 4.HANE,TESLIM}. In
the performances, the order of these sections and the number of
times that they are played often vary. Our ultimate aim is to find
the most-likely sequence of sections that are present in a perfor-
mance.

• Duration variable: dn ∈ {1, . . . , D}: determines the duration
of a section in time frames. Due to tempo changes, the durations
of sections vary during the performance, and we compensate for
that by allowingD different durations for a section within a piece.

• Counter variable: cn ∈ {1, . . . , C}: begins at value dn at the
beginning of a section and decrements until it hits 1 during the
presence of the section. It also roughly determines which note of
the given section is played at the time-frame n.
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Fig. 2: Dynamic Bayesian network; The gray nodes are observed,
the white nodes represent the hidden variables, and the arrows rep-
resent the conditional independence structure.

• Repetition variable: rn ∈ {1, . . . , R}: counts the number of
consequent repetitions of a section sn. When a section sn starts
at time n, rn is set to 1 and rn is incremented by 1 if the same
section is performed subsequently. In our corpus, each section is
allowed to repeat at most once, therefore we set R = 2.

The graphical model for the proposed model is given in Figure 2.

3.1. Transition Model

We start by defining the transition distribution for the counter vari-
able as follows:

p(cn|dn, cn−1) =


1, cn−1 = 1 and cn = dn
1, cn−1 = 2 and cn = 1
1− ωc, cn−1 > 2 and cn = cn−1 − 1
ωc, cn−1 > 2 and cn = cn−1 − 2
0, otherwise

This distribution chooses a step of size −1 with a probability of 1−
ωc, and a step of size−2 with a probability ωc as long as the counter
has not yet reached the value 1. When it hits 1, a section boundary
is reached and cn is set to dn, the current duration of the section sn.
This distribution enables the model to compensate for the coarse grid
of the duration variable dn, and helps to model intermediate tempo
values as well as tempo instabilities within a section.

Next, we assume the following transition distribution on the rep-
etition variables:

p(rn|·) =


1, cn−1 6= 1 and rn = rn−1

1, cn−1 = 1 and rn−1 = R and rn = 1
ωr, cn−1 = 1 and rn−1 < R and rn = rn−1 + 1
1− ωr, cn−1 = 1 and rn−1 < R and rn = 1
0, otherwise

This allows for a transition of the repetition counter only at the sec-
tion boundaries (cn−1 = 1). It limits the number of section repe-
titions to R − 1 (1 in our case), and allows for a repetition with a
probability of ωr .

The transition distribution of the duration variable is defined as
follows:

p(dn|sn, dn−1, cn−1) =

{
1, cn−1 6= 1 and dn = dn−1

pd(dn|sn), cn−1 = 1

Here the duration variable stays the same until cn hits 1 and takes
on another duration value depending on the current section sn. This
transition is governed by pd(dn|sn), that is a uniform distribution
over the D possible duration states.

Finally, we define the transition distribution of the section vari-
able as follows:

p(sn|sn−1, cn−1, rn−1) =

{
1, cn−1 and sn = sn−1 6= 1
ps(sn|sn−1, rn−1), cn−1 = 1

This distribution is similar to the one of the duration variable: the
section variable stays the same until cn hits 1 and transitions to an-
other section depending on the previous section sn−1 and the num-
ber of repetitions rn−1. These transitions are governed by the dis-
tribution ps(sn|sn−1, rn−1) that specifies the structural properties
of the musical idiom. In our case, we allow a self transition only if
rn−1 = 1. Otherwise, we force a transition to a different section
that is subsequent in the score. More sophisticated rules could be
introduced, but this was found not to significantly improve model
performance with the given data.

3.2. Observation Model

Given the current section sn, its duration dn, and the counter cn, we
have sufficient information to determine which note is supposed to
be played at time n. We define the mapping f(sn, dn, cn) in such a
way that it determines the true frequency of the note in the score (in
Hc) played at time n. We will briefly call this mapping as fn.

In order to compensate for octave errors that occur in the esti-
mation of the fundamental frequency from the recording, we assume
the following mixture of Gaussians as the observation model:

p(xn|sn, dn, cn) =
1

3

3∑
i=1

N (xn;µi, σ)

where N denotes the Gaussian distribution. Here µ1 = fn, µ2 =
fn−53, and µ3 = fn+53 (where 53Hc corresponds to one octave).

3.3. Model inference

Since all the hidden variables are discrete, we can reduce this model
to an ordinary HMM and we can perform an exact inference by using
the Viterbi algorithm. The most-likely state sequence provides us
with the information regarding the section linking.

4. EXPERIMENTS

4.1. Methodology

We evaluate the proposed model on our annotated data corpus fol-
lowing evaluation procedures applied for note-to-note alignment [5],
and the evaluation as performed in [2]. The Precision Pr, RecallRc,
and F-measure F are defined as follows:

Pr =
NTP

NANN
, Rc =

NTP

NEST
, F =

2 ∗ Pr ∗Rc
Pr +Rc

whereNTP denotes the number of correctly detected section bound-
aries, and NANN and NEST denote the number of annotated and
estimated section boundaries, respectively. A section boundary de-
tection is counted as correct only when it predicts a transition to
the correct section label, and if it happens within a certain tolerance
window. The size of this window Ttol was set to ±3s in [2]. We
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Fig. 3: F-measure depending on allowed temporal tolerance.

chose the same size in the default setting, but we will determine how
demanding higher accuracy affects system performance.

In our experiments, the values of ωc and ωr were not found
critical, and we arbitrarily chose ωc = 0.1 and ωr = 0.5. The
value of σ was set to 0.5, which approximates a tolerance of ±1
Hc and represents a musically meaningful tolerance value [8]. For
our corpus, we allow dn to deviate in D = 5 discrete steps of
[−16%,−8%, 0%, 8%, 16%] from Fdur ∗ d(m), where d(m) de-
notes the length of the m-th section in the score (see Section 2 for
the duration correction factor Fdur).

We compare our model with the approach presented in [2],
which applies the same input features, but proceeds with the align-
ment in two steps that differ significantly from our approach. In the
first stage, they obtain a list of section candidates by applying Hough
transforms to similarity matrices derived from all notated sections
individually compared with the performance. In a second stage, the
approach proceeds with a heuristic procedure to choose between
these candidates in rule based manner. While this system performed
well on the Turkish makam repertoire [2] it is not straightforward
to adapt its complex rule-based processing to any other repertoire.
We will refer to the proposed system as HHMM and to the system
presented in [2] as HOUGH in the remainder of the text.

4.2. Results

In Table 1 the performance measures of the section linking of the two
compared methods are shown. With Ttol = 3s both systems achieve
performance values larger than 0.9, with the differences between the
two systems being statistically not significant in a pairwise t-test at a
5% significance level. When demanding, however, a higher accuracy
in time, the performance of the HHMM suffer a smaller decrease
than the performance of the HOUGH method. The performance at
Ttol = 1s illustrates this behavior, with the performance differences
being statistically significant.

A more detailed illustration of the temporal accuracy of the two
methods can be obtained from Figure 3. Using the section boundary
detections from the experiments with Ttol = 3s we determine how
many of those detections would still be correct at a smaller tolerance
value. It can be seen from Figure 3 that when demanding a lower
tolerance, i.e. a decreasing misplacement between estimation and
true section onset, the HOUGH method (red dashed line) is outper-
formed by the HHMM method (black bold line). This difference is
most likely to be caused by the capability of the HHMM system to
adapt to local tempo changes, compared to the HOUGH method that
imposes a stable tempo throughout a section.

An apparent advantage of the HOUGH method is the faster exe-
cution time. In order to compare for this, the runtimes were recorded
and the real time factors as the quotient of the execution time and
the duration of the audio file were computed. The mean values of

Table 1: Performance with Ttol = 3s and Ttol = 1s

Ttol Algorithm Precision Recall F-measure
3s HHMM 0.956 0.937 0.946
3s HOUGH 0.945 0.920 0.932
1s HHMM 0.852 0.841 0.846
1s HOUGH 0.807 0.786 0.797

Table 2: Real-time factors
Algorithm HHMM HOUGH HHMM (downs.)
Real-time factor 0.254 0.030 0.018

the individual real-time factors are listed in Table 2, where it is ap-
parent that the HHMM in its described parametrization is almost an
order slower then the HOUGH system. Instead of including prun-
ing steps as proposed by [6], we experimented with downsampling
the input data as a very simple way to reduce the size of our state-
space. We increased the sampling period of the data by factor 3 from
46.6ms to 139.8ms by a simple median filtering followed by a se-
lection of every third data sample. This helps to reduce the size of
the state-space, which is determined for each piece by the product
S ×R×D × C1. This downsampling leads to a dramatic decrease
of the real-time factor, as shown in the fourth column of Table 2. It
should be pointed out that the HOUGH system also profits from such
a step, however only by a speed-up of factor 4. As the dotted black
line in Figure 3 shows, this downsampling leads to a significant de-
crease of performance only when a tolerance of less than 300ms is
demanded. Since the evaluation of note-to-note alignments is often
performed using values around 300ms it is apparent that such an
accuracy is sufficient for the task.

5. CONCLUSION

In this paper, we proposed a score-informed hierarchical Hidden
Markov Model for modeling musical audio signals from a coarser
temporal level, where the main idea is to explicitly model the
long range and hierarchical structure of music signals. We address
the section linking problem in Turkish makam music, which is a
challenging task due to the substantial differences between the per-
formances and the reference score. Our model enables for rapid
inference while maintaining the advantages of flexibility to tempo
changes and comprehensibility of the model structure that makes
its adaptation to different repertoires a straight-forward task. Fur-
thermore, phrasing the problem in such a probabilistic framework
also enables for automatic adaptation of model parameters to new
datasets.

We compared the proposed model with a rule-based approach [2]
that was tailored in order to cope well with the idiosyncrasies of
Turkish makam music such as micro-tonality and heterophony. Our
experiments indicate that the HHMM provides a higher temporal
accuracy than the rule-based model, while the inference can be sped
up significantly by simple downsampling.

We plan to include further features into the proposed model,
such as the consideration of rhythmical properties of the piece. Fur-
thermore, the occurrence of long improvisations in a performance
poses a problem that the HHMM in its current structure cannot deal
with. Ways to cope with such conditions will be the next steps to
improve the performance of the model in a general context.

1For our dataset, the largest value of C decreases from 3975 to 1326. A
typical value for S is 5.
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