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Abstract

Sample and statistically based singing synthesizers typically re-
quire a large amount of data for automatically generating ex-
pressive synthetic performances. In this paper we present a
singing synthesizer that using two rather small databases is able
to generate expressive synthesis from an input consisting of
notes and lyrics. The system is based on unit selection and uses
the Wide-Band Harmonic Sinusoidal Model for transforming
samples. The first database focuses on expression and consists
of less than 2 minutes of free expressive singing using solely
vowels. The second one is the timbre database which for the En-
glish case consists of roughly 35 minutes of monotonic singing
of a set of sentences, one syllable per beat. The synthesis is
divided in two steps. First, an expressive vowel singing per-
formance of the target song is generated using the expression
database. Next, this performance is used as input control of the
synthesis using the timbre database and the target lyrics. A se-
lection of synthetic performances have been submitted to the
Interspeech Singing Synthesis Challenge 2016, in which they
are compared to other competing systems.

Index Terms: singing voice synthesis, expression control, unit-
selection.

1. Introduction

Modeling expressive singing voice is a difficult task. Humans
are highly familiarized with the singing voice, human’s main
musical instrument, and can easily recognize any small artifacts
or unnatural expressions. In addition, for a convincing expres-
sive performance, we have to control many different features
related to rhythm, dynamics, melody and timbre. Umbert et al.
[1] provide a good review of approaches to expression control in
singing voice synthesis. Sample and statistically based speech
or singing synthesizers typically require a large amount of data
for generating expressive synthetic performances of a reason-
able quality [2, 3, 4, 5]. Our aim is to provide a good trade-off
between the expressiveness and sound quality of the synthetic
performance on the one hand, and the database size and effort
put into creating it on the other hand. Another motivation is the
participation in the Singing Synthesis Challenge 2016. In par-
ticular, this work is a continuation of our previous contributions
on the expression control of singing voice synthesis [6, 7] and
on voice modeling [8, 9].

In section 2 we detail the used methodology: how databases
are created, how synthesis scores are built and how samples are
selected and concatenated. In section 3, we provide insights
on the synthesis results and plan an evaluation of the synthesis
system for rating its sound quality and expressiveness and com-
paring it to a performance driven case. We finally propose some
future refinements.
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Figure 1: Block diagram of the proposed synthesizer.

2. Methodology

The proposed singing synthesizer generates expressive synthe-
sis from an input consisting of notes (onset, duration) and lyrics.
The synthesis is divided in two steps. First, an expressive vowel
singing performance of the target song is generated using the
expression database. In this step, we aim at generating natural
and expressive fundamental frequency (f0) and dynamics tra-
jectories. Next, this performance is used as input control of a
second synthesis step that uses the timbre database and the tar-
get lyrics. The system is based on unit selection and uses a voice
specific signal model for transforming and concatenating sam-
ples. The main advantages of such system are the preservation
of fine expressive details found in the samples of the database,
and also a significant usage of musical contextual information
by means of the cost functions used in the unit selection process.
The system is illustrated in Figure 1.

2.1. Databases
2.1.1. Expression database

The expression database consists of free expressive a cap-
pella singing using solely vowels. In our experiments we just
recorded 90 seconds of a male amateur singer. We asked him
to sing diverse melodies so to lessen redundancy. Our main
interest with this database is to capture typical fO expressive
gestures of the singer. One reason for using only vowels is that
we can greatly reduce the microprosody effects caused by the
different phonemes (e.g. decrease of several semitones in fO
during voiced fricatives). fO is estimated using the Spectral
Amplitude Correlation (SAC) algorithm [10]. The recordings
are next transcribed into notes (onset, duration, frequency) us-
ing the algorithm described in [10], and manually revised.

It is well known that vowel onsets are aligned with per-
ceived note onsets in singing [11]. Thus, the singer was in-
structed to use different vowels for consecutive notes in order
to facilitate the estimation of the sung note onsets. Otherwise, it
might be difficult to distinguish between scoops and portamen-
tos, unless a noticeable dynamics or fO related event clearly
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Figure 2: Example of a vibrato baseline.

marked the note onset. Vibratos segments were manually la-
beled. Then f0 is decomposed into a baseline function (free of
modulations) and a residual. The baseline functions is estimated
by interpolating f0 points of maximum absolute slope, where
the slope is computed by the convolution of f0 with a linear
decreasing kernel (e.g. [L,L —1,...,0,... — L+1,—L]). In
our experiments, the kernel has a length of 65 ms (13 frames of
5 ms). An example is shown in Figure 2.

2.1.2. Timbre database

The timbre database consists of monotonic singing of a set of
sentences, one syllable per beat, i.e. singing the same note at
a constant pace. The sentences are gathered from books, and
chosen so to approximately maximize the coverage of phoneme
pairs while minimizing the total length. For estimating the set
of phoneme pairs and their relevance, we used a frequency his-
togram computed from the analysis of a collection of books.
In our experiments, for the English case we recorded 524 sen-
tences, which resulted in roughly 35 minutes.

We instructed the singer to sing the sentences using a sin-
gle note, at a constant syllable rate, and with a constant voice
quality. Moreover, we favored sequence of sentences with the
same number of syllables. According to our experience, these
constraints help to reduce the prosody effects related to the sen-
tence meaning and to the actual words pronounced. By contrast,
microprosody related to phoneme pronunciation is present and
not greatly affected.

Recordings are manually segmented into sentences. All
sentences are transcribed into phoneme sequences using the The
CMU Pronouncing Dictionary [12]. Next, the Deterministic
Annealing Expectation Maximization (DAEM) algorithm [13]
is used to perform an automatic phonetic segmentation. The
recordings are analyzed using the SAC and the Wide-Band Har-
monic Sinusoidal Model (WBHSM) [8] algorithms for extract-
ing f0 and harmonic parameters.

The last step is to estimate the microprosody, a component
not considered in our previous work on expression control of
singing synthesis [6, 7]. We are mostly interested in capturing
f0 valleys typically occurring during certain consonants. With
that aim, for each sentence, we estimate the difference between
f0 and the sequence obtained by interpolating fO values be-
tween vowels. We limit the residual to zero or negative values.
Thus, the obtained residual is zero along vowels, and can be
negative in consonants.

2.2. Expression score

The input of the system is a musical score consisting of a se-
quence of notes and lyrics. As described in Figure 1, the first
step is to generate an expressive vowel performance of the tar-
get song using the expression database. For that it is necessary

to compute the expression score. The Viterbi algorithm is used
to compute the sequence of database units that better match the
target song according to a cost function that considers trans-
formation and concatenation costs. While in [7] units were se-
quences of three consecutive notes, here we use sequences of
two notes, grouped in three unit classes: attack (silence to note
transition), release (note to silence) and interval (note to note).

One requirement is that the class of selected database units
and target song units has to match. Furthermore, interval units
are categorized into ascendent, descendent or monotonic ac-
cording to their interval. Ascendent units are not allowed to
be selected for synthesizing descendent units and vice versa.
The concatenation cost C.. is zero when consecutive units in the
database are connected, 1 otherwise. This cost favors (when
possible) to use long sequences from the database recordings.
The transformation cost C, is computed as

Cir =Ci+ Cy ey

where C; is the interval cost and Cy is the duration cost. The
interval cost is computed as
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. 1 if r<1
Pi_{1+(r2—1)~w if r>1} S
_ |1¢]
"= max(0.5, |Is]) @
w— min(S,mgm(l,Z&/Is) )

where I; and I are the target and source intervals expressed in
semitones, and P; is an extra penalty cost for the case where
short source intervals are selected for large target intervals. The
duration cost is computed as

Cq = Can1 + Can2 (6)

where Cyy,1 and Cgype are the duration costs corresponding to
each note. For a given note, the duration cost is defined as

Cdn:d'Pd (7)
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where D, and D; are the target and source durations expressed
in seconds, and Py is an extra penalty cost for the case where
source notes are compressed. An extra penalty cost of 10 is
added if there is a class mismatch between the previous unit in
the database song and the previous unit in the target song, also
between the following ones.

2.3. Timbre score

A second synthesis step is to compute the timbre score out of
the target song notes, lyrics, and the expressive vowel singing
performance. The goal is to generate an expressive song com-
bining the voice characteristics of the timbre database and the
f0 and dynamics characteristics of the vowel singing perfor-
mance. For that we need to compute the timbre score. As in the
previous section, we use the Viterbi algorithm to compute the
sequence of source units that best match the target song accord-
ing to a cost function considering transformation and concate-
nation costs. In our case units are sequences of two consecutive
phonemes (i.e. diphonemes).



We often expect to find one syllable per note, typically con-
taining vowels and consonants. One important aspect is that
the vowel onset has to be aligned with the note onset, hence the
consonants preceding the vowel have to be advanced in time be-
fore the actual note onset. In the end, we create a map between
notes and the actual phonemes sung within each note. For deter-
mining the phoneme durations we use a simple algorithm based
on statistics computed from the timbre database. For each non-
vowel target phoneme, we select the best unit candidates (with
a pruning of 20) in the database according to the costs next de-
fined, considering both the diphonemes that connect the pre-
vious phoneme with the current one, and those connecting the
current phoneme with the following one. We estimate the mean
duration of those candidates. Then, given the mean durations
of each phoneme in a note, we fit the durations so that they fill
the whole note. Vowels can be as long as needed. However,
for ensuring a minimum presence of vowels in short notes we
constrain the vowel duration to be at least a 25% of the note. In
case the sum of durations of the non-vowel phonemes is more
than 75%, those are equally compressed as needed.

The concatenation cost C. is zero when consecutive units
in the database are connected. Otherwise, a large cost of 15 is
added when the connected phoneme is a vowel, 2.5 otherwise.
This cost greatly favors (when possible) to use long sequences
from the database recordings, especially for vowels. The trans-
formation cost Cy, is computed as

Ct'r = Cf() + Cd + Cph (10)

where C'yg is the cost related to f0, Cy is the duration cost, and
Cph is the phonetic cost. Only diphoneme samples matching
the target diphoneme are allowed. Cpy, refers to a longer pho-
netic context covering the previous and following diphonemes
existing in the database recording and in the target score. Essen-
tially, Cpy, is zero if both diphonemes are matched, otherwise
for each diphoneme compared a cost of 0.125 is set for matching
the phonetic type (e.g. voiced plosives), 0.1875 for matching a
similar phonetic type (according to a configuration parameter),
0.25 otherwise. Specifically for vowels, if the longer phonetic
context is not matched, we add an extra cost of 5. This greatly
favors longer phonetic contexts for vowels than for the rest of
phonemes. If the timbre database is rather small, it is likely that
certain diphonemes existing in the target song are missing in the
database. For such cases, diphoneme candidates of the same or
similar phonetic types are allowed. C'yg is zero for the silence
phoneme, and for the rest of phonemes is computed as

| Ps — Py ;
Cro = { En if

0 otherwise

Ps > —cocand Py > —o0

(11)
where Ps and P; are respectively the source and target note f0
in cents. The duration cost is computed as

Ca = |log2(D:/Ds)| - Pa (12)

P 1 if r<1lorph ¢ vowels
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where D, and Dy are the target and source durations expressed
in seconds, and Py is an extra penalty cost for the case where
short database vowels are selected for large target vowels.
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Figure 3: LF (red) and HF (blue) decomposition of the 7" har-
monic amplitude time-series of a growl utterance.

2.4. WBHSM concatenative synthesizer

The waveform synthesizer is a concatenative synthesizer and
uses a refined version of the WBHSM algorithm [8] for trans-
forming samples with high quality.

2.4.1. Analysis

This algorithm is pitch synchronous. Period onsets are deter-
mined by an algorithm that favors placing onsets at positions
where harmonic phases are maximally flat [14]. Each voice
period is analyzed with a certain windowing configuration that
sets the zeros of the Fourier transform of the window at multi-
ples of f0. This property reduces the interference between har-
monics, and allows the estimation of harmonic parameters us-
ing a temporal resolution close to one period of the signal, thus
providing a good trade off between time and frequency resolu-
tion. On the other hand, unvoiced excerpts are segmented into
equidistant frames (each 5.8 ms) and analyzed with a similar
scheme.

The output of the analysis consists on a set of sinusoidal pa-
rameters per period. For each period, frequencies are multiples
of the estimated fO (or the frame rate in unvoiced segments).
Amplitude and phase values represent not only the harmonic
content but also other signal components (e.g. breathy noise,
modulations) that are present within each harmonic band.

Furthermore, a novelty over the original algorithm in [8]
is that harmonic amplitude time series are decomposed into
slow (LF) and rapid (HF) variations in relatively stable voiced
segments (i.e. with low values of f0 and energy derivatives).
Each component can be independently transformed and added
together before the synthesis step. The motivation is to sepa-
rate the harmonic content from breathy noise and modulations
caused by different voice qualities. This method effectively al-
lows to separate the modulations occurring in a recording with
growl or fry utterances (see Figure 3), and to transform them
with high quality. For each period, a spectral envelope (or tim-
bre) is estimated from the LF component.

2.4.2. Transformation

The most basic transformations are fO transposition, timbre
mapping, filtering and time-scaling. Synthesis voice period
(or frame) onsets are set depending on the transposition and
time-scaling transformation values. Each synthesized frame is
mapped to an input time. This time is used to estimate the out-
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Figure 4: f0 mapping function for a note unit transformation.
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put features (timbre, f0) by interpolating the surrounding input
frames. Furthermore, timbre is scaled depending on the trans-
formation parameters (timbre mapping and transposition).

The LF component of the synthesized sinusoidal ampli-
tudes are computed by estimating the timbre values at multiples
of the synthesis f0. The HF component is obtained by loop-
ing the input HF time-series. For each harmonic time-series,
we compute the cross-correlation function between the last time
used and the current mapped input time. The cross-correlations
functions of the first harmonics (up to 10) are added together.
If the maximum peak is above a certain threshold (3.5 in our
experiments), it is used to determine the next HF position. Oth-
erwise, the minimum value is used as the next HF position. The
aim is to continue period modulations, but also to preserve noisy
time-series. Both LF and HF components are added together.

Another improvement over the original WBHSM algorithm
in [8] is that for voiced frames, phases are set by a minimum
phase filter computed from the LF harmonic amplitudes. In ad-
dition, the (unwrapped) phase differences between consecutive
voice periods are added to the synthesized phases. This helps
to incorporate the aperiodic components to the synthesis sound,
and improve its naturalness.

2.4.3. Unit transformation and concatenation

The first step of proposed synthesizer consists in rendering the
expression score by transforming and concatenating units of the
expression database. The sequence of units is set by the expres-
sion score. Units are sequences of two consecutive notes. Each
unit is transformed so to match the target notes and duration.
The note modification is achieved by a applying an f0 map-
ping determined by the source and target notes. Figure 4 shows
the resulting mapping for a source interval of +3 semitones ex-
panded to a target interval of +6 semitones. The fO contours
are shifted below the first note and above the second note, but
scaled in between.

Transformed units are concatenated to produce continuous
feature contours (timbre, f0. The concatenation process cross-
fades the feature contours of the overlapping note between
transformed units. Our intention is that most of the interval
transition gesture of each unit is preserved during the synthesis
process. While in previous works we manually set the transi-
tion segments and used them to determine the f0 cross-fade po-
sition, now we propose to determine it by minimizing the sum
of three costs: distance to the middle of the note, distance to
the note reference f0, and absolute fO derivative. Vowel tim-

bre cross-fading is set just at the end of the overlapping note.
If vibratos are present, another novelty with respect to our pre-
vious work is that the residual (i.e. difference between f0 and
the baseline, see Figure 2) is looped using the cross-correlation
function similarly as for the HF component explained previ-
ously. This method effectively preserves the vibrato character-
istics. The vibrato residual cross-fading is performed at the be-
ginning of the overlapping note, so that mostly one vibrato is
used along the note.

The second step of the synthesizer consists in rendering
the timbre score by transforming and concatenating units of
the timbre database (diphonemes). Feature of the overlapping
phoneme are cross-faded, aiming at producing continuous tran-
sitions. Crossfading is set between the 40% and the 90% of
each phoneme, except when gaps are detected and then used
for cross-fading. Period onsets are synchronized in the cross-
fading area. LF and HF components are cross-faded, as well as
the f0 microprosody. Finally, a time-varying gain is applied to
the synthesis performance so to match the energy contour of the
input performance. The gain is estimated for vowels and inter-
polated in between to avoid exaggerating consonants, since the
input performance consists of vowel singing.

3. Evaluation and discussion

A selection of synthetic performances submitted to the Inter-
speech 2016 Singing Synthesis Challenge can be downloaded
from [15], including a cappella versions as well as mixes with
background music. Figure 5 shows an example of the energy
and fO0 contours of a synthetic vowel belonging to the jazz stan-
dard ”But not for me”. Notes are also plotted. We observe that
the contours are rich in details: several vibratos appear, with
time-varying characteristics, even together with long scoops in
the highest notes.

In the future, we plan to evaluate our system with a lis-
tening test comparing (a) synthesis with automatic expression
vs (b) performance driven synthesis from the same singer and
from a different singer. Possible refinements are to expand the
musical context considered in unit selection and to enrich the
current energy control with some parameters related to timbre
(e.g. spectral slope). Another future direction is to include voice
quality related expressions, such as growl or fry, in the expres-
sion database. In that direction, we show at the end of the ”Au-
tumn leaves” song from [15] that a convincing growl can be
already generated by the current system.
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Figure 5: Energy and fO contours of a synthetic performance.
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