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ABSTRACT

In the more recent past, the area of semantic audio has become object of special attention due to the
increase in attractiveness of signal representations which allow manipulations of audio on a symbolic level.
The semantics usually refer to audio objects, such as instruments, or musical entities, such as chords or
notes. On this view, we present a system for making minor corrections to amateur piano recordings based
on a nonnegative matrix factorization. Acting as middleman between the signal and the user, the system
enables a simple form of musical recomposition by altering pitch, timbre, onset and offset of distinct notes.
The workflow is iterative, that is the result improves stepwise through user intervention.

1. INTRODUCTION the musician to correct the misplayed notes in his song,
in order to change the semantics. For this to be possible,

Semantic audio is an emerging area in audio. Its scope in e need a suitable signal representation.

the standard case is the extraction of symbols from audio

that have a meaning, such as beat, genre, etc. One could Nonnegative matrix factorizations (NMFs) have gained a

think of the semantics as being the result of the interplay
of some low-level entities with certain properties. A song
with misplayed notes, e.g., may have the connotation to
be amateurish and of low musical quality. In the present
work, we seek to elaborate this idea further, in the sense
that we provide a description of a system, which enables

*This work was partially funded by the Yamaha Corporation.

lot of popularity over the last 15 years since Lee and Se-
ung demonstrated their applicability to real-world prob-
lems [1,2]. So far, typical applications in speech and au-
dio signal processing are speech enhancement, automatic
speech recognition, speaker diarization, audio coding,
bandwidth extension, dereverberation, automatic music
transcription, and finally source separation, to name the
most prominent ones. In regard to music retouch, which
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is the subject of our paper, the following works can be
pointed out: Durrieu et al. use an NMF together with a
source-filter model to separate the vocal from the instru-
mental [3,4]. Rafii et al., on the other hand, look for
repetitive patterns to isolate the vocal by means of me-
dian filtering [5]. Beyond, since an NMF is by no means
“musical”, several authors have proposed different ap-
proaches in order to obtain musically more meaningful
or robust results. Smaragdis et al., e.g., use dictionaries
that are trained a priori on clean samples [6]. Ewert e?
al. carry it to extremes and use aligned scores to improve
accuracy, and in this way the musical reliability of the
factorization [7, 8]. An attempt to apply audio effects to
the content of a mix by manipulation of the NMF can be
found in [9].

Typical time-frequency (TF) representations for an NMF
are the short-time Fourier transform (STFT) [10], for
the reason of its analytic properties, or the constant-Q
transform (CQT) [11, 12] due to its particular aptitude
for stringed instruments with widely harmonic spectra,
such as the piano. Ideas for how to model a harmonic
structure more explicitly can be found in the works by
Vincent ef al. [13] and Fuentes et al. [14]. Another way
of improving the factorization is by using, e.g., the B-
divergence [15-17] in the cost function and by tuning
the B-value to the problem at hand [13]. A value of zero,
e.g., corresponds to the Itakura—Saito divergence, which
according to Févotte et al. yields better results for music
in particular as compared to the Kullback—Leibler diver-
gence or, all the same, the Euclidean distance [18].

Also, there exist some commercial solutions that can be
mentioned in this context. Celemony’s Melodyne!, for
instance, is an award-winning music editor that offers a
very satisfactory analysis of polyphonic recordings. It
relies on classical signal processing and makes use of
the theory of harmony to converge to a meaningful re-
sult. Another product worth mentioning here is Zynap-
tiq’s PITCHMAP?. It requires no NMF to alter, e.g., the
key of a music piece and it works in real time. Another
commercial solution, yet for voice removal, that should
not go unmentioned is Audionamix’ ADX TRAX?3.

Our system is oriented towards amateur musicians who
would like to make some minor corrections to their home
recordings, and all that in a simple, computer-assisted

"http://www.celemony.com/
’http://www.zynaptiq.com/pitchmap/
3http://www.audionamix.com/

manner. To this end, we pursue an NMF-based ap-
proach in combination with supervised learning using an
instrument-specific dictionary. The audio material under
consideration is composed of piano-plus-vocal record-
ings captured with a single microphone. The user per-
forms note-level manipulations in pitch, time, and tim-
bre. The vocal is removed in a preprocessing step and not
further modified. After the corrections have been made
to the piano part, the separated vocal is mixed back again.
The user interacts with the system through a graphical
interface. He provides additional input that improves the
decomposition and specifies the corrections to be made.
The partial outcome is assessed after each applied modi-
fication via integrated playback functionality.

The organization is as follows. Section 2 shows the basic
framework of our system. Section 3 gives details on our
extensions to the basic framework and its fine structure.
Section 4 illustrates how the system operates in a retouch
scenario, in which the user makes some modifications to
a single-channel piano-and-vocal recording. In section 5,
we discuss our approach from various angles. Section 6
concludes the paper and highlights the main points.

2. BASIC FRAMEWORK

In this section, we present the basic system consisting of
the following three processing steps: the vocal removal,
the decomposition, and the resynthesis. All steps require
some user input, be it only through the assessment of the
intermediate results.

2.1. Vocal Removal

In the existing literature, the problem of vocal removal
has exhaustively been studied. The state of the art, such
as [3], achieves good separation in a scenario where the
vocal is dominating over the musical accompaniment. In
our system, the vocal removal is a pre-process, which is
decoupled from the piano analysis and transformation.

We resort to an existing system [19-21]. It estimates the
vocal pitch contour through timbre classification [19]. In
addition, it captures inharmonic voice components, such
as breathiness [20] and fricative sounds [21]. The soloed
vocal is side-chained and mixed back into the piano part
after resynthesis before the output.

2.2. Decomposition

The decomposition of the instrumental part into objects
after vocal removal is based on an NMF approach in the
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TF domain. More precisely, the observed spectrogram is
factorized as

X~SAT: KxNeRT, (1)
where
A=[Ai(n) Ay(n) Ar(n)] 2)

represents the activation gains or velocity of the spectral
note bases

n

S=[Si(k) S$a2(k) Sr(K)] s 3)

which is also referred to as “the dictionary”. The size of
the dictionary, i.e. the number of distinct note objects, is
given by the number of columns R < min(K,N), which
is equal to the rank of the factorization.

In real-world recordings, many simultaneous notes with
high spectrotemporal overlap appear. For this reason, but
more particularly because (1) is not unique, the resulting
factorization may not capture the underlying sequence of
played notes, making it hard to interpret the result from
a musical point of view. A better result is achieved when
the dictionary is learned from separate notes of the same
or similar instrument under the same or similar acoustic
conditions. For piano recordings, a dictionary that covers
the full piano range typically has R = 88 notes, e.g. such
an (overcomplete) dictionary would be held fixed during
the factorization and the activations would be adapted to
best fit the mixture spectrum w.r.t. to the chosen distance
metric DX(SAT,X):

A = argmin DX (SAT, X), )
A

where D¥(-,) in this case refers to a Bregman distance
that is generated from a convex function F. In literature,
(4) is also termed supervised learning. 1f the NMF uses
multiplicative updates, the result further improves if the
velocity matrix A is initialized with zeros for notes that
are not likely to appear. In this simple yet effective way,
the total energy will be distributed among the remaining
notes only.

2.3. Resynthesis

Once the mixture spectrogram is factorized, we would go
on and try to manipulate and resynthesize the recording.
Individual piano notes, alias note objects, can be isolated
by means of spectral filtering or “soft masking”:

X; = (sia] ©SAT) ©X. )

In (5), elementwise multiplication is indicated by ® and
elementwise division by @, respectively. The vectors s;
and a; denote the spectral basis and the activation gains
of the ith note. The phase relation is arg X; = arg X. One
can alter the pitch and the duration of the separated note
by use of pitch-shifting and/or time-stretching methods
directly in the frequency domain [22]. Transformed note
objects are then mixed back into the residual signal.

The main drawback of this approach is that the quality of
the transformed note strongly depends on the accuracy of
the separation. If, e.g., the note attack is captured barely,
the transformed note will sound less natural. Moreover,
phase-vocoder techniques offer good quality in the range
of less than one octave. The amount of pitch shifting that
can be applied without introducing too many artifacts is
hence very limited. In Section 3, we propose techniques
to overcome these limitations.

2.4. User Input

Any of the above steps, if carried out fully automatically,
will be imprecise, which might lead to an end result that
is far from satisfactory. And thus, for the reason that no
machine learning algorithm, so far, can reliably replicate
neither human behavior nor perception, the user must be
made part of the framework. His direct implication is to
the effect that the result at each step is satisfactory. This
he can assess through critical listening. In case the result
is not satisfactory, he should be enabled to make further
corrections and listen to the result again. Then he would
decide between going over to the next step or going back
to the previous state. One example is the fine-adjustment
of the pitch contour in vocal removal. That is the reason
why we consider the work flow “iterative”. It should be
noted that the hearing apparatus of the individual, which
cannot be replaced by any objective metric, is involved
in the whole process.

3. EXTENSIONS

One major problem that we address is that the accuracy
of the factorization compromises the extent of possible
note transformations with respect to sound quality. The
accuracy of the factorization, on the other hand, depends
largely on the musical complexity of the recording in the
form of overlapping partials. For that reason, we resort
to an external note generator in the form of a sample
bank, when necessary. The acoustic color of notes stem-
ming from the sample bank is “morphed” into the color
of the recorded piano to better fit the mix. As a result,

AES 137" Convention, Los Angeles, USA, 2014 October 9—12
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Fig. 1: The system overview (decomposition with vocal
removal, user intervention via GUI, and resynthesis).

with our system, single notes can be muted, transformed,
or inserted from a sample bank and timbre-adapted to
the original mix. The accuracy of the decomposition
could be improved, if the corresponding score was avail-
able [7,8]. Therefore, we provide the user with a coarse
initial transcription that he can refine further. The com-
plete system is shown in Fig. 1. The extensions to the
basic framework are discussed below.

3.1. Morphing

As mentioned previously, the sound quality of a filtered
(through soft-masking)and pitch-shifted, or transposed,
note object can suffer from severe artifacts, which are
due to modeling errors or the behavior of the soft mask
at a low signal-to-interference ratio (SIR), or both. This
is the case when a low-energy note interferes with high-
energy partials of a more dominant note, such as a bass
note. To overcome this limitation, we resort to an internal
sample bank or a tone generator. As the sample bank may
not necessarily match with the instrument in the mixture,
we then apply a timbre filter to a note that stems from
outside the mix, i.e. from the sample bank, e.g., to make
the remix sound more homogeneous. The computation
of the timbre filter is as follows. With the equivalent-

rectangular-bandwidth (ERB) scale given by [23]
ERBS(f) =21.4-log;, (1+0.00437- 1), (6)

where f is in Hz, the transfer function® writes

_ ff’ Ximix(f,) /
X v (7)
s.t. [ERBS(f")| = |[ERBS(f)].

Hi(f)

Note that both notes have the same pitch, as indicated by
the subscript i. This is to make sure that the spectra have
the same support (harmonics) in order to avoid divisions
by zero, or by very small numbers in general. In (7), the
spectrum X/™*( ) hence belongs to the note that is to be
corrected and so removed, while X°"!( f) is the spectrum
of the corresponding note in the sample bank. The actual
filtering operation or “morphing” simply consists in the
multiplication of the spectrum of the note that is inserted
from the sample bank into the mix:

XN (f) = Hi(f) - X2 (), @®)
where f
~ Xiout (f)
X() = Ty X0 @
fitg

The weighting in (9) makes sure that the inserted note is
approximately as loud as the removed note. Note that |- |
in (7) denotes the floor function.

3.2. Automatic Transcription

As seen in the results obtained in score-informed separa-
tion, it is to expect that a preliminary transcription step
can improve the quality of the note decomposition and
separation of piano recordings. Here we propose a new
method for piano note transcription by combining i) a
NMF-based note decomposition with ii) a transient esti-
mation per note using the phase information.

The resulting transcription is computed by detecting on-
set candidates on the note energy curve and selecting
only those with a transient estimation above a threshold.

From (1) we obtain in A an activations curve over time
for all 88 notes. Next we perform source separation for
all 88 notes using soft masking, see (5), obtaining one
separated complex spectrogram per note i.

4Only the amplitude spectrum is considered.
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Then for each note i, we compute a transient curve from
the separated magnitude spectrograms. The transient es-
timation function I'(X;) provides a scalar value per frame
computed from the complex spectrogram X;. For piano
recordings, maxima on the transient estimation function
shall indicate note onsets. I'(X;) is a measure of the tem-
poral center of gravity of energy of spectral peaks within
the windowed signal for one frame. See [24] for details.
To increase robustness, the transient curve is weighted by
the note energy curve ¢;(n), avoiding spurious transients
from other notes. We obtain a transient curve #;(n) for all
88 notes as depicted in figure 2.

i(n) = =S (10)

Next step is detecting a set of peaks from the energy
curve e;(n) as onset candidates K;. Only peaks above
a threshold f, are considered. Then we select only those
candidates k; with a transient curve above a threshold
ti(k;) > PB;. The onset detection output is a list of frame
indexes for each note K! for a note i. Threshold values
B and B; are empirically determined.

Once we detected the onsets for each note, we obtain the
final note transcription by computing also note duration
and dynamics. The note duration is set by looking at
the frame index in which the energy curve ¢;(n) is below
the energy threshold f3,, with a maximum duration of 2.5
seconds. A value for note dynamics is also obtained from
the maximum of the note energy curve ¢;(n) within the
note duration.

4. USE CASE: RETOUCH

Now, we illustrate the interplay of all the components of
our system in a retouch scenario, in which an (amateur)
musician corrects the misplayed notes before uploading
a recording with his performance to a video sharing site,
such as YouTube or Nico Nico Douga.

4.1. Graphical User Interface

The user interacts with the system by use of a graphical
user interface (GUI). It is built around a piano-roll-like
representation of the note activation gains obtained after
the decomposition. The result of the NMF is captured in
the static background image, while single note objects or
regions of notes are drawn as transparent rectangles atop

(a) Time-pitch representation of the NMF (activation gains)

(b) Intermediate result of note onset detection

Fig. 2: Note activation gains and the resulting onsets for
automatic transcription.

of the background. This allows the user to mark distinct
note objects and to specify the desired transformation in
a very intuitive manner. The GUI also provides means to
improve the decomposition as explained further below.

4.2. Workflow

Fig. 3 shows the interplay of sequential processing and
user interaction including the signal flow, which is from
top to bottom. Only the corrections on the note transcrip-
tion and the desired note transformations require user in-
tervention. The rest is automated.

4.3. Analysis

In one of the initial steps, the user invokes the NMF that
yields a piano-roll view of the recorded signal. Since the
NMF assumes that the input signal is piano only, a vocal
removal algorithm is run first. Any algorithm that is apt
at this task can be used, see Section 2.1. The signal after
vocal removal would ideally contain only the piano part,
see Fig. 4.

However, keep in mind that it is not reasonable to expect

AES 137" Convention, Los Angeles, USA, 2014 October 9—12
Page 5 of 9



Janer et al. OBRAMUS
[ original mix ]
[ vocal removal ]
[ initial decomposition ]
o [ transcription adjustments ]
w
2 v
[ note corrections ]
A 4
[ resynthesis ]
refinement [ retouched mix ] (a) Spectrogram of the piano-and-vocal recording

Fig. 3: Iterative workflow with user intervention.

that the initial decomposition is comparable with a MIDI
score. This is partly because it is run without any a priori
information on the notes played, see Fig. 5(a). The notes
played by the left and the right hand are bordered by two
translucent rectangles. The notes activated outside of the
rectangles spurious and are mostly due to octave errors.

To reduce the number of spurious notes, the user would
rerun the NMF specifying the active note regions or in a
more extreme case specifying each active note. In order
to facilitate this process and to reduce the amount of time
that the user would spend on fine-adjusting each distinct
note, the system provides an automatic transcription after
every new run of the NMF. Thus, the user can choose to
either run a region-informed or a transcription-informed
NMF subsequent to the previous decomposition. In that
case, the activation gains outside of the marked areas are
set to zero during initialization, see Section 2.2 for fur-
ther details. For comparison see Fig. 5(b), which shows
the result of the region-informed NMF.

4.4. Transformation and Resynthesis

Once the decomposition is deemed reliable enough, one
would resort to the provided note transcription and apply
the desired corrections by use of the GUI. At the present
stage, the system allows the user to move around, delete,
insert, and change the duration of distinct notes. Wrong
or misplayed notes are labeled as “source” objects while

(b) Spectrogram after vocal removal

Fig. 4: The spectrogram before and after vocal removal.

the correct notes are labeled as “target” objects. After all
the source objects and their corresponding target objects
have been specified by the user, the system performs the
the following processing steps:

Removal of source objects from the mix
Insertion of target objects from the sample bank
Morphing of target objects to match the mix

Combining 1 and 3 to form the remix

A S e

Mixing the vocal back into 4
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(a) Initial decomposition and active note regions

(b) Region-informed decomposition

Fig. 5: An example of a user-refined decomposition by
indication of active note regions.

Fig. 6: Source objects (marked red) are transformed into
target objects (marked yellow).

4.5. Playback

The GUI is further equipped with playback functionality
that lets the user select and listen not only to the original
and the final mix, but also to the removed vocal, the part
of the piano, the source objects, the background, and the
target object before and after morphing. In this manner,
one can easily detect the source of error in case the final
mix is not satisfactory and can focus on the problem.

5. DISCUSSION

One may ask the question why we address amateurs and
not professionals in the first place. The answers are very
simple. Firstly, amateur recordings are less sophisticated
from a musical point of and exhibit more errors than the
recordings of professional musicians. And so, there is a
greater need for simple tools that would allow for minor
corrections. Secondly, amateurs are more likely to accept
certain imperfections in the retouched recording. In that
respect, the presented system is “good enough”. Still, it
should be noted that the present context is not as simple
as it may seem: the piano is polyphonic, the score is not
available, there is the interference with a loud vocal, and
we should neither forget about the effect of a reverberant
environment.

Given the high level of difficulty, we would like to point
out the importance of user intervention. The more input
the user provides to the system at various levels, such as
the transcription, the more accurate in terms of quality is
the final result. As each modification that is made by the
user can change the result for the better or for the worse,
it is necessary to let the user listen to each partial result,
so he can decide whether to carry on with the next step.

If during the decomposition the spectral particularity of
an instrument is taken into account, more reliable results
can be expected. So, if further optimized, the NMF-like
approach would allow for a finer decomposition w.r.t. a
tool such as Melodyne or similar. However, this does not
go without the incorporation of music theory such as the
theory of harmony in Western music, which would help
the NMF make musically more meaningful decisions. It
could also assist the user in the refinement of objects. A
system with the described optimizations could also serve
as a post-production tool for film and music. In the latter
case at least, the processing techniques would need to be
extended to stereo.

It is wrong to think that the system is applicable to piano
recordings only. Dictionaries for different instruments or
different playing styles, room acoustics, etc. are storable
and could be selected by the user according to the given
mix. These can also be adapted to the mix through NMF
updates. Apart from retouch, other use cases include:

Instrument replacement
The bass line (left hand), e.g., is replaced by a bass
guitar, a contrabass, or any other instrument.

AES 137" Convention, Los Angeles, USA, 2014 October 9—12
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Mono-to-stereo upmix
The separated bass line (left hand) and the melody
line (right hand) of a mono recording are panned in
stereo, so as to stretch the sound in space.

Automatic accompaniment
Using the transcription function, a group of objects
representing, e.g., the melody line is synthesized as,
e.g., a string ensemble and added to the remix.

In our framework, vocals removal is a separate process
and it is assumed that the remaining instrumental is more
or less clean. However, this is not necessarily true, since
the result depends on the accuracy of the pitch detection
and on the accuracy with which unvoiced phonemes and
reverberation tails are suppressed. These artifacts are yet
negligible, because the isolated vocal is mixed back into
the rectified remix. For some audio samples refer to the
group’s website.’

6. CONCLUSION

We presented an audio system that enables manipulation
of individual notes in a piano-plus-vocal recording. The
system was originally designed for amateurs, but it may
be used in a professional context as well. The framework
is NMF-based, and so it is different from Melodyne and
similar tools. We highlighted the main limitations of the
approach, which are subject to the accuracy of the NMF
variant used. Without any doubt, a decomposition that is
reliable in a musical sense will allow for a better quality
at the output. This includes a better suppression of note
attacks and so-called “phantom” notes that are the result
of octave errors. One simple way to improve accuracy is
to leave the user with the option to intervene and correct
the automatic transcription if necessary. He is, thus, part
of the system—a sort of supervisory authority. Another
thinkable direction for future work is the incorporation
of music theory in the decomposition stage to avoid note
phantoms. Nevertheless, one should pay attention to the
fact that misplayed notes could be mistaken for phantom
notes in that case.

The integration of an internal sample bank together with
timbre filtering extended the potential of the system in a
sustained manner. The quality is sufficient for a note not
to be perceived as “extraneous” to the background. Thus,
our system could be used to create remixes and mashups
of existing music, as well. Whereas notes taken out of a

Shttp://www.mtg. upf . edu/

sample bank yield perfect quality, the morphing will not
turn, e.g., an electric guitar into a piano. In a more open
scenario, the user must hence be given access to a broad
range of different sample banks to choose from. Future
work can also address the problem of recommending the
instrument in the sample bank which comes close to the
mix. Joint estimation of the vocal and various objects of
different character such as notes, chords, or drum hits in
a single NMF is another problem to tackle [25].
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