A musical sound analyzer and synthesizer uses a model that considers a sound to be composed of two types of elements: a deterministic component plus a stochastic component. The deterministic component is represented as a series of sinusoids, with an amplitude and a frequency function for each sinusoid. The stochastic component is represented as a series of magnitude spectral envelopes. From this representation, sounds can be synthesized that, in the absence of modifications, can behave as perceptual identities, that is, they are perceptually equal to the original sound. In addition, stored representations of sounds can be easily modified in a musical synthesizer to create a wide variety of new sounds.
FIGURE 1
FIGURE 2
FIGURE 5
MUSICAL SYNTHESIZER COMBINING
DETERMINISTIC AND STOCHASTIC
WAVEFORMS

This application is a continuation in part of application
Ser. No. 07/350,114, filed May 10, 1989 and now
abandoned.

The present invention relates generally to musical
synthesizers and particularly to methods and systems
for analyzing sound signals and for synthesizing new
sound signals.

BACKGROUND OF THE INVENTION

A shortcoming of prior art musical synthesizers is
that such synthesizers generally try to use a single
model to represent all musical sounds. It is very difficult
to get a single model to faithfully represent the wide
range of musical sounds. It is also important to provide
a model for representing sounds which makes it possible
and practical to reproduce and transform the sounds
generated by the synthesizer. The present invention
uses a model with two very different types of elements
to represent two different aspects of musical sounds.

SUMMARY OF THE INVENTION

In summary, the present invention is a musical sound
analyzer and synthesizer which is based on a model that
considers a sound to be composed of two types of ele-
ments: a deterministic component plus a stochastic com-
ponent. The deterministic component is represented as
a series of sinusoids, with an amplitude and a frequency
function for each sinusoid. The stochastic component is
represented as a series of magnitude spectral envelopes.
From this representation sounds can be synthesized
to the extent of modifications, can behave as perceptual
identities, that is, they are perceptually equal to the
original sound. In addition, stored representations
of sounds can be easily modified in a musical synthesizer
to create a wide variety of new sounds.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects and features of the invention will
be more readily apparent from the following detailed
description and appended claims when taken in con-
junction with the drawings, in which:

FIG. 1 is a block diagram of a musical sound analyzer
in accordance with the present invention.

FIG. 2 is a block diagram of a musical sound synthe-
sizer in accordance with the present invention.

FIG. 3 is a block diagram of a second preferred em-
bodyment of a musical sound analyzer in accordance
with the present invention.

FIG. 4 is a block diagram of a second preferred em-
bodyment of a musical sound synthesizer in accordance
with the present invention.

FIG. 5 is a block diagram of a third preferred em-
bodyment of a musical sound synthesizer in accordance
with the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention's analysis and synthesis tech-
nique is based on the short-time Fourier transform
(STFT), from which the relevant magnitude peaks are
detected and assigned to a number of frequency trajec-
tories. The deterministic component is obtained from
these trajectories with an additive synthesis technique.

More specifically, the deterministic component is a set
of sound partials which represent the deterministic
component of a limited time sample of the waveform
being analyzed.

Then, in order to obtain the stochastic component,
the spectra of the deterministic component are sub-
tracted from the spectra of the original waveform. The
result is a residual spectra which, in turn, can be approx-
imated by a series of amplitude envelopes. These en-
velopes represent the stochastic component. When synthe-
sizing new sounds, the stochastic component is synthe-
sized by multiplying the spectrum of white noise with
these frequency envelopes and performing an inverse-
STFT.

The model used by the present invention assumes that
the input sound s(t) is the sum of a series of sinusoids
plus a noise signal e(t):

\[s(t) = \sum_{k=1}^{R} A_k \cos(\theta_k(t)) + e(t) \] (Eq. 1)

where \(A_k(t) \) and \(\theta_k(t) \) are the instantaneous amplitude
and phase of each sinusoid and \(e(t) \) is the noise signal. \(R \)
is the number of sinusoids used in the series to represent
the sound.

The model used in the present invention also assumes
that the sinusoids are stable partials of the sound \(s(t) \) and
that each one can be characterized by its amplitude and
frequency. The instantaneous phase is then taken to be
the integral of the instantaneous frequency \(\omega(t) \), and
therefore satisfies

\[\theta_k(t) = \int_{0}^{t} \omega_k(\tau) d\tau \] (Eq. 2)

where \(\omega(t) \) is the frequency in radians, and \(r \) is the sinus-
oi number.

The residual \(e(t) \) in Equation 1 is also simplified by
assuming it is a stochastic signal. Such an assumption
allows us to model the residual as filtered white noise:

\[e(t) = \int_{0}^{t} h(t - \tau) u(\tau) d\tau \] (Eq. 3)

where \(u(\tau) \) is white noise and \(h(t) \) is the impulse response
of a slowly time varying filter. That is, the residual is
modeled by the convolution of white noise with a fre-
quency shaping filter.

The analysis, transformation and synthesis techniques
of the present invention are based on the above model
which combines deterministic and stochastic elements
for representing sounds.

FIG. 1 shows a sound analyzer 100 in accordance
with the present invention. The first step in analyzing a
sound signal is to break it into a series of time frames,
sometimes called windows. In particular, a clock gener-
ator 102 generates a sequence of window signals which
are used by gate 104 to divide the sound waveform into
separate time frames. The time frames are analyzed by a
fast Fourier Transform (FFT) so as to generate a set
of complex spectra values. The FFT 106 uses the short-
time Fourier Transform because this technique uses
relatively short time frames (e.g. 50 milliseconds per
time frame).

When computing the Fourier Transform, a "Kaiser
window" is used to smooth the outer edges of each time
frame. The length (i.e., duration) of the windows depends on the lowest frequency $\omega(t)$ that is being tracked. In particular, the window has a duration of at least four or five cycles of the lowest frequency that is to be tracked—in order to accommodate for the time-frequency trade-off associated with STFT. Furthermore, the size of the sample buffer used by the STFT should be at least double the size of the window (i.e., double the number of samples collected during each window) because a big “zero-padding” in the buffer improves the performance of the technique.

A complex to real number converter 108 converts the complex spectra generated by the FFT 106 into a set of magnitude spectra for each time frame.

A peak detector and sound partial analyzer 110 finds the highest peaks in the magnitude spectra and performs a parabolic interpolation to refine the frequency and amplitude values generated. Each identified peak has a frequency and a magnitude value. The peaks from a series of time frames are then organized into pairs of frequency and magnitude trajectories, each pair of which represents a sound partial. Thus the analyzer 110 extracts the stable sinusoids present in the original sound (the deterministic component). The frequency and magnitude trajectories are typically stored for use in a music synthesizer, as will be described below.

The stochastic part of the waveform is generated as follows. First, the deterministic component of the original waveform is regenerated from the frequency and magnitude trajectories by reversing the process that was used to generate them. In particular, a sinewave generator 120 converts the frequency and magnitude trajectories into a “deterministic waveform”.

The deterministic waveform is then gated by gate 122 with the window signals from clock generator 102. The Fourier Transform of the deterministic waveform is then generated by a fast Fourier Transform 124 using the same STFT technique as was used to analyze the original waveform. Thus the FFT 124 generates a set of complex spectra, which are converted into magnitude spectra by a complex to real number converter 126. The magnitude spectrum of the deterministic signal is then subtracted from the magnitude spectrum of the original waveform by subtractor 128, yielding a residual spectrum.

Finally, an envelope generator 130 generates a line segment approximation 132 of the residual signal’s spectral envelope—i.e., the envelope of the residual power spectrum output by the magnitude spectra subtractor 128. These envelopes represent the stochastic signal portion of the original waveform.

FIG. 2 shows a sound synthesizer 200 in accordance with the present invention. Various sets of sound signals, as represented by the sound analyzer shown in FIG. 1, are stored in memories 202 and 204. Memory 202 stores pairs of magnitude and frequency trajectories, each pair representing a sound partial. Memory 204 stores residual spectral envelopes corresponding to the magnitude and frequency trajectories in memory 202.

More particularly, these memories 202 and 204 each store a series of values for producing sound signals in a corresponding series of time frames. Thus for each separate time frame there is a set of frequency and magnitude values stored in memory 202 which govern the deterministic waveform to be generated, and a spectral envelope (i.e., a set of frequency and magnitude values) is stored in memory 204 which governs the stochastic waveform to be generated.

The deterministic or sinusoidal component of the synthesized sound is generated using selected ones of the magnitude and frequency trajectories stored in memory 202. The trajectories may be transformed or manipulated by a frequency trajectory transformer 206 and a magnitude trajectory transformer 208. These transformers 206 and 208 may stretch a trajectory in time, perform linear or even nonlinear transformations, or may add, subtract and weight various partials from the database of partials in the memory 202. The transformers 206 and 208 alter the acoustic qualities of the deterministic waveform generated by the synthesizer 200, and thereby add to the range and quality of sounds that can be generated.

Of course, the original trajectories may be used untransformed. Each trajectory output by the transformers 206 and 208 is converted into a sine wave by one of a set of sine wave generators 210. Several sine wave generators are provided so that several partials can be generated simultaneously. These sine waves are combined by a sine wave adder 212, resulting in the generation of the deterministic portion of the synthesized waveform.

The stochastic part of the synthesized sound is generated by creating a complex spectra out of the spectral envelope of the magnitude spectra residual, or its modification, and doing an inverse STFT. The stored spectral envelopes in memory 204 may be transformed by a spectral envelope transformer 220. The resulting envelope becomes the magnitude portion of the stochastic signal. The transformer 220 alters the acoustic qualities of the stochastic waveform generated by the synthesizer 200, and thereby adds to the range and quality of sounds that can be generated.

In order to generate the phase part of the spectrum for the stochastic signal, the STFT of a windowed white noise signal is computed using a noise generator 222, signal gate 224 for windowing or gating the noise signal, and an FFT 226. A phase generator converts the complex spectra output by the FFT into phase spectra values. These phase spectra and the magnitude values representing the spectral envelope are expressed in polar coordinates (i.e., real values). The polar coordinate values are converted into complex spectra by a polar-to-rectangular coordinate converter 230. The resulting complex spectra are then inverse Fourier transformed by an inverse-FFT 232 to generate the stochastic waveform. The process of generating the stochastic waveform corresponds to the filtering of white noise by a filter with a frequency response equal to the spectral envelope. Thus the stochastic signal circuitry 222–232 is essentially a white noise filter.

Finally, the stochastic and deterministic waveforms are added by adder 240 to generate the complete synthesized waveform. By proper selection of input trajectories and transformations, one can generate a very wide range of sounds using the synthesizer 200.

Second Preferred Embodiment of Signal Analyzer

FIG. 3 shows a second and somewhat more complicated signal analyzer 300 than the one shown in FIG. 1. Like the signal model used by the first analyzer, the signal model used by this second analyzer assumes that the input sound $s(t)$ is the sum of a series of sinusoids plus a noise signal $e(t)$.
where \(R \) is the number of sinusoids used to represent the deterministic portion of the sound, \(A_\ell(t) \) is the instantaneous amplitude and \(\theta_\ell(t) \) is the instantaneous phase of each sinusoid. The residual signal \(e(t) \) is the difference between the signal and the sinusoidal or deterministic part.

However, in this model, the instantaneous phase is defined by

\[
\theta_\ell(t) = \int_0^t \omega_\ell(\sigma) d\sigma + \theta_\ell(0) + \phi_r
\]

where \(\omega_\ell(t) \) is the frequency in radians, \(r \) is the sinusoid number, \(\theta_\ell(0) \) is the initial phase value, and \(\phi_r \) is a fixed phase offset.

A clock generator 302 generates a sequence of window signals which are used by gate 304 to divide the sound waveform into separate time frames. The time frames are analyzed by a fast Fourier Transformer (FFT) so as to generate a set of complex spectra values. The FFT 306 uses the short-time Fourier Transform, as described above with reference to FIG. 1.

A clock generator 302 generates a sequence of window signals which are used by gate 304 to divide the sound waveform into separate time frames. The time frames are analyzed by a fast Fourier Transformer (FFT) so as to generate a set of complex spectra values. The FFT 306 uses the short-time Fourier Transform, as described above with reference to FIG. 1.

A clock generator 302 generates a sequence of window signals which are used by gate 304 to divide the sound waveform into separate time frames. The time frames are analyzed by a fast Fourier Transformer (FFT) so as to generate a set of complex spectra values. The FFT 306 uses the short-time Fourier Transform, as described above with reference to FIG. 1.

A clock generator 302 generates a sequence of window signals which are used by gate 304 to divide the sound waveform into separate time frames. The time frames are analyzed by a fast Fourier Transformer (FFT) so as to generate a set of complex spectra values. The FFT 306 uses the short-time Fourier Transform, as described above with reference to FIG. 1.

A clock generator 302 generates a sequence of window signals which are used by gate 304 to divide the sound waveform into separate time frames. The time frames are analyzed by a fast Fourier Transformer (FFT) so as to generate a set of complex spectra values. The FFT 306 uses the short-time Fourier Transform, as described above with reference to FIG. 1.

A clock generator 302 generates a sequence of window signals which are used by gate 304 to divide the sound waveform into separate time frames. The time frames are analyzed by a fast Fourier Transformer (FFT) so as to generate a set of complex spectra values. The FFT 306 uses the short-time Fourier Transform, as described above with reference to FIG. 1.

A clock generator 302 generates a sequence of window signals which are used by gate 304 to divide the sound waveform into separate time frames. The time frames are analyzed by a fast Fourier Transformer (FFT) so as to generate a set of complex spectra values. The FFT 306 uses the short-time Fourier Transform, as described above with reference to FIG. 1.

A clock generator 302 generates a sequence of window signals which are used by gate 304 to divide the sound waveform into separate time frames. The time frames are analyzed by a fast Fourier Transformer (FFT) so as to generate a set of complex spectra values. The FFT 306 uses the short-time Fourier Transform, as described above with reference to FIG. 1.

A clock generator 302 generates a sequence of window signals which are used by gate 304 to divide the sound waveform into separate time frames. The time frames are analyzed by a fast Fourier Transformer (FFT) so as to generate a set of complex spectra values. The FFT 306 uses the short-time Fourier Transform, as described above with reference to FIG. 1.

A clock generator 302 generates a sequence of window signals which are used by gate 304 to divide the sound waveform into separate time frames. The time frames are analyzed by a fast Fourier Transformer (FFT) so as to generate a set of complex spectra values. The FFT 306 uses the short-time Fourier Transform, as described above with reference to FIG. 1.
FIG. 5 shows a third and even simpler sound-synthesizer 500 than the ones shown in FIGS. 2 and 4. In the previous embodiments, the spectral envelopes for the residual signals were effectively represented by a line segment approximation of the spectral envelope. This is because the spectral envelopes were represented by a set of magnitude values for a number of discrete frequency values. In a typical implementation of the synthesizer in FIG. 4, a set of perhaps fifteen values would be stored to represent the magnitude of the spectral envelope at fifteen frequencies. The remainder of the spectral envelope is formed or computed by linearly interpolating between the stored values.

In this synthesizer 500, the spectral envelope is represented using a LPC (linear predictive coding) model instead of a set of magnitude values. As is well known to those skilled in the art, any spectral envelope can be approximated or represented by a set of LPC coefficients. Furthermore, any set of LPC coefficients, which correspond to an all-pole filter (also known as an IIR or infinite impulse response filter), can be converted into lattice filter coefficients using well known conversion algorithms. See, for example, Markel, J. D. and Gray, A. H. Linear Prediction of Speech, Springer-Verlag, New York (1976), which is hereby incorporated by reference.

Thus, in FIG. 5, memory 502 stores the spectral envelopes for each of a series of time frames in the form of lattice filter coefficients (shown as kl through kp if FIG. 5). One advantage of storing a spectral envelope in the form of lattice filter coefficients is that less data points are needed (i.e., for each time frame), and therefore less storage is required. Transformer 504 performs a windowing type of function by interpolating the lattice coefficient values between time frames so as to provide smooth transitions over time. The resulting lattice coefficients are loaded into a lattice filter 506. The lattice filter 506 filters white noise generated by a noise generator 508 and outputs the stochastic waveform that is combined with the deterministic waveform to form a synthesized waveform.

This embodiment of the present invention has the advantage of requiring less data storage than the other embodiments, and also substitutes a lattice filter for the inverse FFT in those embodiments, all of which makes this embodiment less expensive and simpler to implement than the other embodiments. The primary tradeoff is that this embodiment is less flexible in terms of its ability to manipulate the stored spectral envelopes for generating a modified stochastic waveform.

While the present invention has been described with reference to a few specific embodiments, the description is illustrative of the invention and is not to be construed as limiting the invention. Various modifications may occur to those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims.

What is claimed is:

1. A sound waveform synthesizer, comprising:
 a. storage means for storing data denoting a sequence of sound partials and data denoting a corresponding sequence of spectral envelopes;
 b. sinusoidal waveform generator means coupled to said storage means for generating a sequence of first 65 waveforms during a sequence of time frames, including means for generating sinusoidal waveforms during each said time frame corresponding to a selected one of said sound partials denoted by data stored in said storage means;
 c. stochastic waveform generator means coupled to said storage means for generating a sequence of stochastic waveforms during said sequence of time frames, including means for generating stochastic waveforms during each said time frame having a spectral envelope corresponding to a selected one of said spectral envelopes denoted by data stored in said storage means; and
 d. means for generating a synthesized sound waveform, including means for combining said first waveforms and said stochastic waveforms;
 e. said stochastic waveform generator means including noise generating means for generating a noise signal; and
 f. filter means coupled to said storage means and said noise generating means for generating a stochastic waveform, including means for filtering said noise signal with a time varying frequency response during said sequence of time frames, said frequency response during each said time frame corresponding to a selected one of said spectral envelopes denoted by data stored in said storage means.

2. A sound waveform synthesizer as set forth in claim 1, wherein said data denoting a sequence of spectral envelopes includes data denoting a set of lattice filter coefficients for each of a sequence of time frames; said filter means in said stochastic waveform generator means comprising lattice filter means for filtering said noise signal with a time varying frequency response during said sequence of time frames, said frequency response during each said time frame corresponding to a selected one of said sets of lattice filter coefficients denoted by data storage in said storage means.

3. A sound waveform synthesizer as set forth in claim 1, said noise generating means comprising random number generating means for generating a set of random phase values for each said time frame; said filter means including:
 a. stochastic spectra means for generating a set of complex spectral values for each said time frame, including means for combining said set of random phase values for each said time frame with a selected one of said spectral envelopes denoted by data stored in said storage means; and
 b. inverse Fourier transform means coupled to said stochastic spectra means for generating a stochastic waveform for each said time frame by inverse Fourier transforming said complex spectral values.

4. A sound waveform synthesizer as set forth in claim 1, further including:
 a. means for transforming said sounds means with said sinusoidal waveform generator means, including means for transforming selected ones of said sound partials stored in said trajectory storage means, thereby altering the acoustic qualities of said sequence of first waveforms.

5. A sound waveform synthesizer as set forth in claim 1, further including:
 a. transform means coupling said storage means with said sinusoidal waveform generator means, including means for transforming selected ones of said spectral envelopes stored in said storage means, thereby altering the acoustic qualities of said sequence of stochastic waveforms.
6. A sound waveform synthesizer, comprising:
trajectory storage means for storing sound partials,
including means for storing corresponding sets of
magnitude and frequency trajectories, each set
representing a sound partial;
envelope storage means for storing spectral envel-
opes, each spectral envelope corresponding to the
stochastic portion of a predefined sound;
sinusoidal waveform generator means coupled to said
trajectory storage means for generating a first
waveform corresponding to selected sound partials
stored in said trajectory storage means;
noise generating means for generating a noise signal;
filter means coupled to said envelope storage means
and said noise generating means for generating a
stochastic waveform, including means for filtering
said noise signal with a frequency response equal to
a selected spectral envelope stored in said envelope
storage means; and
means for generating a synthesized sound waveform,
including means for combining said first waveform
and said stochastic waveform.

7. A sound waveform synthesizer as set forth in claim
6, further including
transform means coupling said trajectory storage
means with said sinusoidal waveform generator
means, including means for transforming selected
ones of said sound partials stored in said trajectory
storage means, thereby altering the acoustic qualities
of said first waveform.

8. A sound waveform synthesizer as set forth in claim
6, further including
envelope transform means coupling said envelope
storage means with said filter means, including
means for transforming selected ones of said spec-
tral envelopes stored in said envelope storage means,
thereby altering the acoustic qualities of
said stochastic waveform.

9. A method of generating sound waveforms, the
steps of the method comprising:

storing data denoting a sequence of sound partials and
data denoting a corresponding sequence of spectral
envelopes;
generating a sequence of first waveforms during a
sequence of time frames, including generating a
plurality of sinusoidal waveforms during each said
time frame corresponding to a selected one of said
stored sound partials; and
generating a sequence of stochastic waveforms dur-
ing said sequence of time frames, including generat-
ing stochastic waveforms during each said time
frame having a spectral envelope corresponding to
a selected one of said stored spectral envelopes; and
combining said first waveforms and said stochastic
waveforms to generate a synthesized sound wave-
form;
said second generating step including the steps of
generating a noise signal; and
filtering said noise signal with a time varying fre-
quency response during said sequence of time
frames, said frequency response during each said
time frame corresponding to a selected one of said
stored spectral envelopes.

10. A method of generating sound waveforms, as set
forth in claim 9, wherein said stored data denoting a
sequence of spectral envelopes includes data denoting a
set of lattice filter coefficients for each of a sequence of
time frames;
said noise filtering step including the step of filtering
said noise signal with a lattice filter employing time
varying lattice filter coefficients corresponding to a
sequence of said sets of lattice filter coefficients.

11. A method of generating sound waveforms, as set
forth in claim 9, said second generating step including
the steps of:
said noise generating step including generating a set
of random phase values for each said time frame;
said noise filtering step including the steps of:
generating a set of complex spectral values by com-
bining said set of random phase values for each said
time frame with a selected one of said spectral
envelopes denoted by said stored data; and
inverse fourier transforming said complex spectral
values for each said time frame.

12. A method of generating sound waveforms, as set
forth in claim 9, said first generating step including
the step of transforming selected ones of said stored sound
partials and thereby altering the acoustic qualities of
said sequence of first waveforms.

13. A method of generating sound waveforms, as set
forth in claim 9, said second generating step including
the step of transforming selected ones of said stored
spectral envelopes and thereby altering the acoustic
qualities of said sequence of stochastic waveforms.

14. A sound waveform synthesizer, comprising:
storage means for storing data denoting a sequence of
sound partials and data denoting a corresponding
sequence of spectral envelopes;
sinusoidal component generator means coupled to
said storage means for generating a sequence of
sinusoidal waveform components during a se-
time frames, including means for generat-
ing sinusoidal waveform components during
each of said time frame corresponding to a selected
one of said sound partials denoted by data stored in
said storage means;
stochastic component generator means coupled to
said storage means for generating a sequence of
stochastic waveform components during said se-
time of time frames, including means for generat-
ing stochastic waveform components during
each said time frame having a spectral envelope
thereby altering the acoustic qualities of
said sequence of stochastic waveforms.

15. A sound waveform synthesizer as set forth in
claim 14, wherein said noise shaping means comprises
inverse fourier transforming means for generating a
stochastic waveform for each said time frame by inverse
fourier transforming said noise signal combined with
selected ones of said spectral envelopes.
11

16. A sound waveform synthesizer as set forth in claim 14, further including transform means coupling said storage means with said sinusoidal waveform generator means, including means for transforming selected ones of said sound partials stored in said trajectory storage means, thereby altering the acoustic qualities of said sequence of first waveforms.

12

17. A sound waveform synthesizer as set forth in claim 14, further including envelope transform means coupling said storage means with said stochastic waveform generator means, including means for transforming selected ones of said spectral envelopes stored in said storage means, thereby altering the acoustic qualities of said sequence of stochastic waveforms.